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Abstract 

Background:  Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. One of the main challenges 
in the management of OC is the late clinical presentation of disease that results in poor survival. Conventional tissue 
biopsy methods and serological biomarkers such as CA-125 have limited clinical applications. Liquid biopsy is a novel 
sampling method that analyzes distinctive tumour components released into the peripheral circulation, including 
circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets 
(TEPs) and exosomes. Increasing evidence suggests that liquid biopsy could enhance the clinical management of OC 
by improving early diagnosis, predicting prognosis, detecting recurrence, and monitoring response to treatment. Cap-
turing the unique tumour genetic landscape can also guide treatment decisions and the selection of appropriate tar-
geted therapies. Key advantages of liquid biopsy include its non-invasive nature and feasibility, which allow for serial 
sampling and longitudinal monitoring of dynamic tumour changes over time. In this review, we outline the evidence 
for the clinical utility of each liquid biopsy component and review the advantages and current limitations of applying 
liquid biopsy in managing ovarian cancer. We also highlight future directions considering the current challenges and 
explore areas where more studies are warranted to elucidate its emerging clinical potential.
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Introduction
Ovarian cancer is the third most common gynecologic 
malignancy worldwide and is associated with the highest 
mortality rates among gynecologic cancers [1]. Each year, 
more than 240,000 new cases are diagnosed, and 150,000 
women die from ovarian cancer, with five-year sur-
vival rates below 45% [2]. Ovarian cancer encompasses 
a heterogeneous group of neoplasms classified based on 
distinctive histopathological and molecular character-
istics. Epithelial ovarian cancer (EOC) is the most com-
mon type of ovarian cancer that is further classified into 
four major subtypes based on tumour cell morphology: 
serous, endometrioid, clear cell, and mucinous [3].

Ovarian cancer has also been classified into two sub-
types with distinct molecular profiles and clinical courses 

(Fig.  1). Type I tumours are low-grade, more indolent, 
and less aggressive tumours that are characterized by 
mutations in mitogen-activated protein kinase (MAPK) 
regulator pathways (e.g. KRAS or BRAF) [4]. In contrast, 
Type II tumours such as high-grade serous ovarian can-
cer (HGSOC) are aggressive and have high genetic insta-
bility. These are associated with high mutation rates in 
TP53, somatic and germline BRCA1/2 and other homol-
ogous recombination genes [5]. Identifying the unique 
tumour mutational profile can guide treatment decisions 
and the selection of appropriate targeted therapy. For 
example, polyadenosine diphosphate (ADP)-ribose poly-
merase inhibitor (PARPi) treatment confers a significant 
progression-free survival (PFS) benefit in patients with 
a germline or somatic BRCA1/2 mutation by causing an 
accumulation of double-stranded DNA breaks and cell 
death [6–8].

The high morbidity and mortality in ovarian cancer 
are related to the late diagnosis of disease and decreased 
effectiveness of surgical or pharmacological therapies. 

Open Access

*Correspondence:  mohammad.akbari@utoronto.ca

1 Women’s College Research Institute, Women’s College Hospital, University 
of Toronto, 76 Grenville St, Toronto, ON M5S 1B2, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-022-01588-8&domain=pdf


Page 2 of 24Zhu et al. Molecular Cancer          (2022) 21:114 

Due to the late onset of symptoms and their nonspecific 
nature, up to 75% of ovarian cancer cases are diagnosed 
with advanced disease, of which only about 20% will live 
up to 5 years from the time of diagnosis [9, 10]. The cur-
rent standard of care for ovarian cancer is cytoreductive 
surgery followed by platinum-based chemotherapy [11]. 
Although patients initially respond well to treatment, 
most patients with advanced ovarian cancer relapse and 
develop chemoresistance within a few years [12].

There has been an ongoing search for diagnostic, prog-
nostic, or predictive biomarkers to improve ovarian 
cancer management in the last few decades. Although 
CA-125 is currently the best-characterized biomarker 
in ovarian cancer, its sensitivity, specificity, and survival 
benefit are insufficient for routine screening purposes 
[12, 13]. Temporal monitoring of CA-125 during follow-
up has also not demonstrated benefit in overall survival 
(OS) [12]. Similarly, tissue biopsies are not feasible as 
they are highly invasive and only provide localized sam-
pling with limited sensitivity. These shortcomings of 
existing screening and detection methods have resulted 
in a continued search for more specific and sensitive bio-
markers for ovarian cancer.

In the last decade, liquid biopsies that measure various 
tumour components, including circulating tumour DNA 
(ctDNA), cell-free RNA (cfRNA), circulating tumour cells 

(CTCs), tumour educated platelets (TEPs) and exosomes, 
have become recognized as a method for molecular 
screening and earlier diagnosis of ovarian cancer (Fig. 2). 
Compared to traditional tissue biopsies, liquid biopsy is 
minimally invasive and serial blood samples can be col-
lected over time to monitor cancer progression in real-
time. This review discusses the advantages and current 
limitations of liquid biopsy in the management of ovar-
ian cancer. It will also explore different components and 
techniques of liquid biopsy, and its utility in ovarian can-
cer diagnosis, prognosis, and clinical monitoring of treat-
ment response or recurrence.

Liquid biopsy components
CTC: physiologic characteristics and analysis
CTCs are cancer cells found in peripheral blood that 
intravasate or are passively shed from a primary or met-
astatic solid tumour site. Several analytic methods for 
CTC isolation have been developed and validated for 
ovarian cancer that are based on various biological (i.e., 
positive epithelial markers, negative hematopoietic mark-
ers) or physical properties (i.e., size, density, deformabil-
ity, electric charges, and invasive capacity) [14–29]. The 
ability to detect CTCs in the bloodstream has important 
prognostic implications in ovarian cancer for identify-
ing potential micrometastasis, pre-neoplastic lesions, 

Fig. 1  Schematic representation of ovarian cancer classification into Type I and Type II tumours based on histology, clinical features, and molecular 
profile with commonly associated mutations. Type I tumours tend to be slow growing, less aggressive, and more likely to be diagnosed at earlier 
stages of disease associated with genetic stability. Type II tumours usually present with more aggressive, rapid growing disease that is diagnosed in 
more advanced stages, and are associated with a higher degree of genetic instability
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tumour heterogeneity, and tumour evolution over time 
[30–33].

Isolation of CTCs from peripheral blood samples is 
technically challenging given the low concentration 
with approximately 1 CTC in 1,000,000 circulating cells 
[34–36]. Following release from the primary tumour, 
CTCs overcome several obstacles to survive in the sys-
temic vasculature and spread to distant organs [37]. First, 
tumour cells shed from solid tumours often traverse the 
endothelium to enter the circulation by undergoing the 
epithelial-to-mesenchymal transition (EMT) process. 
EMT is a phenotypic transformation of epithelial cells 
with loss of polarity, morphology, and cell markers such 

as the epithelial cell adhesion molecule (EpCAM), to 
gain the migratory and invasive properties of mesenchy-
mal cells [38]. After dissociation from a primary model 
V2  carcinoma (established from skin carcinoma of cot-
tontail rabbits) site of 1  cm, approximately one million 
CTCs intravasate via dermal invasion into the peripheral 
circulation each day, of which < 1% typically remain via-
ble for metastasis [39]. Most CTCs undergo apoptosis or 
necrosis due to the profound environmental challenges 
in the bloodstream such as starvation, shear stress, and 
immunological detection [40]. Only a small proportion of 
CTCs can survive through upregulation of several signal-
ling pathways, including increased secretion of growth 

Fig. 2  Overview of the liquid biopsy process, from hypothesized mechanisms of tumour release of liquid biopsy components, to laboratory analysis 
techniques. Tumour biomarkers are first released and enter the circulation via one of three main mechanisms: apoptosis, necrosis, or secretion. 
Liquid biopsy involves the collection and analysis of five distinctive tumour components from peripheral blood samples: cell-free nucleic acids 
(cfDNA/ctDNA, cfRNA), CTCs, exosomes and tumour educated platelets. Tumour components in peripheral blood samples are then captured and 
analyzed using their corresponding laboratory assays. cfDNA: circulating free DNA, ctDNA: circulating tumour DNA, cfRNA: cell-free RNA, CTCs: 
circulating tumour cells, TEPs: tumour educated platelets, NGS: next generation sequencing, qPCR: quantitative polymerase chain reaction
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factors, downregulation of death receptors, and over-
expression of anti-apoptotic ligands [39]. CTCs must also 
evade natural immune system defences and natural killer 
(NK) cell recognition. According to the adaptive immune 
resistance theory, tumour cells avoid activation of the 
antitumor response from NK cells and T cells by upregu-
lating the naturally occurring programmed death-ligand 
1 (PD-L1). They also avoid phagocytosis by macrophages 
through the upregulation of CD47 [41–43].

Currently, the CellSearch detection system is the 
most widely used isolation strategy with US Food and 
Drug Administration (FDA) approval. CellSearch uses 
an immunoaffinity-based isolation strategy to identify 
CTCs based on positive EpCAM expression [44]. How-
ever, the application of CellSearch in ovarian cancer may 
be limited in the setting of low EpCAM expression. In a 
study with newly diagnosed or recurrent ovarian cancer 
patients, Liu et  al. found no correlation between serial 
CTC enumeration by the CellSearch system and clinical 
outcomes [15]. One possible explanation is the down-
regulation of EpCAM during EMT or the heterogene-
ous expression of cell surface markers in ovarian cancer 
[15]. Obermayr et al. also reported EpCAM expression in 
a small proportion of EOC patients [21]. The researchers 
used RT-qPCR to analyze EpCAM expression of CTCs 
isolated using density gradient centrifugation from 216 
EOC patients before and after primary treatment com-
pared to 39 healthy controls. The researchers reported 
EpCAM expression in only 8% of patients at baseline 
before treatment and 4% for patients after six months of 
adjuvant chemotherapy.

To overcome these limitations, alternative approaches 
targeting various biophysical properties of CTCs such as 
cell size and invasive potential have been developed [14, 
29]. For example, Yang et  al. recently used a technique 
called CanPatrol enrichment, in which CTCs were fil-
tered through 8-μm porous membranes and detected 
using RNA in  situ hybridization (RNA-ISH). CTC sub-
populations were identified using epithelial (EpCAM and 
CK8/18/19), mesenchymal (vimentin and Twist), and epi-
thelial-mesenchymal hybrid markers [14]. The research-
ers used hybrid markers and found a mean CTC count of 
8.70 ± 5.69 detected in 5 mL of blood among stage 1-IV 
EOC patients that was significantly higher compared to 
controls with benign gynecologic diseases (1.04 ± 0.73). 
Multivariate analyses demonstrated both higher CTC 
counts and higher percentage of mesenchymal CTC were 
independent prognostic factors for significantly lower OS 
(p = 0.012 and p = 0.009 respectively). Fan et al. proposed 
another novel enrichment method utilizing the unique 
property that blood containing CTCs will invade and 
ingest Cell Adhesion Matrix (CAM) while non-tumour 
and dead tumour cells do not [29]. The researchers used 

a cell invasion assay that enriches and identifies tumour 
cells based on CAM invasion (CAM +) and expression of 
standard epithelial markers (Epi +) to analyze peripheral 
blood samples of 71 suspected ovarian cancer patients. 
The study found a significantly higher mean CTC count 
in stage III/IV patients at 41.3 CTCs/ml compared to 6.0 
CTCs/ml in stage I/II patients and 0 CTCs/ml in benign 
patients (p-value = 0.001). Kaplan Meier analysis showed 
a significantly lower disease-free survival in patients with 
detectable CTCs with a median survival of 15.0 months 
compared to 35.0  months in those without detected 
CTCs (p= 0.042). Other novel techniques include modi-
fied immunoaffinity-based strategies targeting sev-
eral ligands at once (e.g. EpCAM, folate receptor alpha, 
Human epidermal growth factor receptor 2) and nano-
particles conjugated with the antibody against Mucin 1 
(MUC1) [45, 46]. Given the rarity of CTCs in peripheral 
circulation despite their prognostication potential, fur-
ther studies are required to optimize the detection and 
isolation of CTCs in ovarian cancer.

cfDNA/ctDNA: physiological characteristics and analysis
Normally, plasma contains cfDNA that is passively 
released from necrotic or apoptotic cells, while ctDNA is 
the cfDNA secreted from cancer cells. In healthy individ-
uals, cfDNA concentrations are elevated following tissue 
damage such as intense exercise, inflammation, sepsis, 
surgery, radiotherapy, trauma, or during pregnancy 
[47–49].

Compared to CTCs, cfDNA concentrations are higher 
in blood, making them suitable targets for liquid biopsy 
[50]. Tumours harbour unique somatic genetic altera-
tions that help in distinguishing ctDNA from noncancer-
ous cfDNA [47, 48]. The majority of cfDNA is expected 
to originate from healthy cells, while a variable amount 
of cfDNA (0.01–93%, depending on the tumour size) can 
originate from cancer cells (ctDNA) [51, 52]. However, a 
popular hypothesis posits that a large fraction of cfDNA 
is released from cells in the tumour microenvironment 
that were destroyed due to hypoxia or the antitumour 
response [53]. Recent studies confirmed that cfDNA lev-
els in the blood are higher among ovarian cancer patients 
with an average of 180  ng/mL compared to 30  ng/mL 
in healthy controls or individuals with benign ovarian 
pathologies [54–56]. Therefore, increased amounts of 
cfDNA may serve as a diagnostic tool for ovarian cancer, 
while genomic analysis of ctDNA may provide valuable 
prognostic and predictive information [57, 58].

The mechanism of cfDNA released from cells into 
the circulation remains unclear, although apoptosis and 
necrosis are the most widely accepted hypotheses based 
on cfDNA properties. Previous studies have estimated 
the size of cfDNA to vary from ~ 40–200 base pairs (bp), 
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with a peak at around 166  bp [53, 59–61]. Agarose gel 
electrophoresis to separate extracted cfDNA has found 
fragment ladders ranging from 160 bp up to 21 kbp [61, 
62]. The size of these fragments corresponds primar-
ily to mono- and oligonucleosomes that are characteris-
tic of caspase-dependent cleavage during apoptosis [59, 
61–63]. In contrast, DNA fragments larger than 10 kb are 
thought to be a result of necrotic cell death in tumours 
with different kinetics and amount of cfDNA released 
from different necrosis-inducing agents [64–66]. How-
ever, this theory has been called into question following 
studies reporting that radiation therapy, which typically 
induces tissue necrosis, results in a reduction of cfDNA 
levels by up to 90% in the plasma of cancer patients [67, 
68]. Other proposed cfDNA release mechanisms include 
active secretion in living cells with the expulsion of 
nuclei, phagocytosis, neutrophil extracellular trap release 
(NETosis), and excision repair [69–74].

Once released into the bloodstream, the size, integrity, 
and half-life of cfDNA have important clinical implica-
tions in diagnosis and tumour detection. One challenge 
currently is the small amount of ctDNA in the blood 
compared to cfDNA released from normal cells, particu-
larly when the tumour size is small. Since a significant 
proportion of ctDNA is released from necrotic can-
cer cells, the cfDNA size in cancer patients is generally 
longer than those of healthy individuals. However, the 
length of ctDNA released from apoptotic cancer cells is 
shorter than cfDNA released from the normal cells due 
to apoptosis, with a mean of 133–144  bp [75]. ctDNA 
enrichment may therefore be possible based on a size 
selection approach. Selecting shorter DNA fragments 
between 90–150  bp improved the detection of ctDNA 
with up to 11-fold enrichment of mutation allele fraction 
[61, 75, 76]. In addition, the distribution of differently 
sized DNA fragments has implications for disease stag-
ing as an indicator of cfDNA Integrity (cfDI). The cfDI is 
defined as the ratio of long (released from necrotic cells) 
to short (released from apoptotic cells) cfDNA fragments. 
cfDI is calculated by measuring long and small ALU 
sequence fragments (ALU247 and ALU115respectively) 
using qPCR [77]. Studies have shown that cancer patients 
have a higher cfDI compared to healthy controls or indi-
viduals with benign disease [78, 79]. Higher integrity is 
associated with increased levels of necrotic cell death 
in advanced disease with larger and more aggressive 
tumours [78, 80].

The short half-life of cfDNA present in the bloodstream 
allows for real-time analyses of the tumour mutational 
profile. The level of cfDNA in circulation at any given 
time is determined by the net amount of DNA released 
minus DNA clearance. cfDNA clearance may occur in 
organs including the liver, spleen, kidney, or lymph nodes 

[81]. In the bloodstream, circulating enzymes such as 
DNase I, plasma factor VII–activating protease (FSAP), 
and factor H are responsible for cfDNA breakdown [82, 
83]. Rapid clearance of apoptotic cells and cfDNA nor-
mally allow for healthy individuals to have low levels of 
cfDNA. In cancer patients, cfDNA accumulates due to 
impaired clearance that is currently poorly understood. 
Using fetal DNA in postpartum maternal circulation, Lo 
et al. estimated the half-life of cfDNA to be approximately 
4 to 30 min, which has been consistent across other stud-
ies [84–87]. However, the half-life of cfDNA may vary 
depending on several factors, including interactions with 
molecular complexes that interfere with cfDNA degrada-
tion, tumour stage and subtype, and treatment [69, 81]. 
Interestingly, one study used next-generation sequenc-
ing (NGS) technology to examine the kinetics of cfDNA 
and found that the clearance of cfDNA may occur in a bi-
phasic manner. The first rapid phase has a mean half-life 
of an hour, followed by a second slow phase with a mean 
half-life of 13 h [88].

Several technologies have been developed for ctDNA 
detection in blood, including quantitative PCR, digital 
droplet PCR (ddPCR), and NGS for targeted sequenc-
ing or whole-genome sequencing (WGS). In addition to 
quantitative changes, these technologies detect qualita-
tive changes in ctDNA, which include tumour-specific 
variants (TSVs), gene fusion, copy number variations, 
aberrant DNA methylation, and chromosomal instability. 
The development of NGS and digital polymerase chain 
reaction (dPCR) has improved the sensitivity and speci-
ficity of ctDNA detection. To date, most ctDNA detec-
tion methods have focused on high-grade serous ovarian 
cancer (HGSOC) patients with targeting TP53 muta-
tions [45, 89–91]. One study used targeted error correc-
tion sequencing (TEC-Seq) to examine 58 cancer-related 
genes encompassing 81 kb and reported the highest sen-
sitivity and specificity at 75–100% and > 80%, respectively 
[89]. In stage I-II disease, the highest detection rate was 
68% with a specificity of 100% that was achieved using 
TEC-Seq and ddPCR combined. The high specificity 
achieved in this study may be attributable to TEC-Seq 
advantages for using deep sequencing for more direct 
evaluation of sequence changes. In fact, deep sequenc-
ing using random unique molecular barcodes annealed 
to each DNA template fragment has been the preferable 
method for detecting low-level signatures of TSVs in liq-
uid biopsies [92]. Duplex sequencing using molecular 
barcodes on both DNA strands for removing sequencing 
errors that are in one strand only has improved variant 
detection accuracy by > 10,000 times compared to con-
ventional NGS [93, 94].

Although ctDNA analysis with plasma samples is cur-
rently the preferred method, alternative approaches have 
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utilized different sources. In 2013, Kinde et al. examined 
the ability of the liquid Pap test with uterine cervix sam-
pling to detect ovarian and uterine cancers. The research-
ers used massively parallel sequencing for TSVs using a 
12-gene panel and found ctDNA in 41% (9 of 22) of ovar-
ian cancer patients [95]. Similarly in 2018, Wang et  al. 
analyzed Pap brush samples from 245 ovarian cancer 
patients using PapSEEK with an assay for mutation in 
18 genes and reported a limited detection sensitivity of 
33%, including 34% for patients with stage I–II disease 
[96]. Likewise, Maritschnegg et  al. conducted a study 
with uterine cavity lavage samples from EOC patients 
and benign gynecologic patients [97]. The researchers 
used NGS for sequencing AKT1, APC, BRAF, CDKN2A, 
CTNNB1, EGFR, FBXW7, FGFR2, KRAS, NRAS, PIK3CA, 
PIK3R1, POLE, PPP2R1A, PTEN, and TP53 genes to ana-
lyze lavage samples. Using NGS, the researchers reported 
detectable mutations, mainly in TP53, in 60% of ovar-
ian cancer patients and an improved ctDNA detection 
rate of up to 80% with more sensitive methods of digital 
droplet polymerase chain reaction (ddPCR) and the Safe-
sequencing system (SafeSeqS). Interestingly, the study 
also found TP53  mutations in lavage samples of all 5 
patients with stage IA disease. Building on these results, 
the same team conducted a study in 2018 demonstrating 
the feasibility of this technique that found a median abso-
lute amount of 2.23 μg cfDNA in uterine and tubal lavage 
samples and TSVs using deep-sequencing in 80% (24 of 
30) of ovarian cancer patients [27]. Given these findings, 
the molecular analysis of uterine lavage samples may 
be a potential technique for the early diagnosis of ovar-
ian cancer. Other novel techniques including peritoneal 
washing, urine sampling, and vaginal sampling have been 
utilized for ctDNA profiling. However, such methods 
require more research to elucidate their diagnostic utility 
in ovarian cancer [98–101].

cfRNA: cell‑free mRNA, miRNA, circRNA and lncRNA
The rapid turnover of tumours results in high gene tran-
scription and shedding of high amounts of cfRNA con-
sisting of mRNA and microRNA (miRNA) into the 
circulation [102]. Normal and tumour cells secrete miR-
NAs into various body fluids, including plasma, urine and 
vaginal discharge, and breast milk [103]. In the blood, 
mRNA and miRNA are bound to specific ribonucleopro-
tein complexes, high-density lipoproteins, platelets, or 
packaged in extracellular vesicles (EV) such as exosomes 
to avoid degradation and acquire more stability [103, 
104]. Several studies have suggested the role of miRNAs 
in tumorigenesis, cell differentiation, proliferation, inhi-
bition of angiogenesis, metastasis, and apoptosis. Impor-
tantly, the biogenesis and activation of miRNAs are faster 
with longer half-lives compared to mRNA and proteins, 

which may make miRNAs more suitable for earlier diag-
nosis of ovarian cancer [105–108].

The diagnostic, prognostic, and therapeutic poten-
tial of circulating miRNAs in ovarian cancer have been 
explored in many studies. In 2008, Taylor et  al. first 
reported that higher levels of 8 exosomal miRNAs (miR-
21/141/200a/200b/200c/203/205/214) were found in the 
serum of ovarian patients compared to healthy controls, 
although there was no significant difference in early ver-
sus late-stage ovarian cancer [109]. These findings were 
subsequently supported by several other studies report-
ing that serum miRNAs (miRNA-141/200a/200b/200c) 
were upregulated in ovarian cancer patients compared to 
normal or benign tumour controls [110, 111]. Gao et al. 
also found that different miRNA-200c expression levels 
may correlate with ovarian cancer staging, with more 
advanced tumours having lower miRNA-200c levels and 
higher miRNA-141 [110]. However, Kim S. et al. analyzed 
seven serum exosomal miRNAs and concluded that the 
expression of miRNA-141, 200a, and 200b were too low 
to be an appropriate serologic biomarker [112].

Although miRNA-145 was identified as the best-per-
forming single marker with a sensitivity of 91.7% and 
accuracy of 86.8%, similar changes in miRNA-145 lev-
els were observed in other malignancies besides ovarian 
cancer [112, 113]. The lack of discrimination between 
cancer types suggests that single miRNAs are unlikely to 
be a reliable biomarker. To overcome these challenges, a 
recent study by Elias et al. was the first to combine NGS 
analysis of serum circulating miRNA with a machine 
learning technique called a neural network model and 
developed a diagnostic algorithm for EOC. The study 
authors reported an AUC value of 0.90 for this model, 
which was significantly higher compared to CA-125. This 
study suggests the potential for a new era of machine-
learning application in biomarker discovery [114].

In 2017, Yokoi et  al. performed miRNA sequencing 
to identify the optimal combination of candidate circu-
lating miRNAs for the early detection of ovarian cancer 
[115]. This study identified eight miRNAs with RT-qPCR 
validation and statistical cross-validation with a large 
research cohort. The predictive model using a combina-
tion of 8 circulating serum miRNAs was able to differ-
entiate early-stage ovarian cancer from benign tumours 
with 86% sensitivity and 83% specificity, and from healthy 
controls with 92% sensitivity and 91% specificity [115]. 
In a later study, the same research team analyzed 4,046 
serum samples from 333 ovarian patients, 95 benign or 
borderline ovarian tumours, 2,759 healthy controls and 
859 other solid cancers using miRNA microarray [116]. 
The study found that combined miRNAs can successfully 
discriminate ovarian from lung, gastric, breast, hepatic, 
colorectal, and pancreatic cancers, but not sarcoma or 
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esophageal cancer. In this study, utilization of circulat-
ing miRNA yielded a sensitivity of 99% and a specificity 
of 100% for discriminating between ovarian cancer and 
healthy controls. This was the first large-scale compre-
hensive study examining circulating miRNAs in ovarian 
cancer and reported promising miRNA combinations for 
the detection of early-stage disease.

In addition to miRNA, circular RNAs (circRNAs) and 
long non-coding RNAs (lncRNAs) also demonstrated 
potential utility as biomarkers for liquid biopsy in ovarian 
cancer. circRNAs have a covalently closed loop structure 
and lncRNAs have transcript sizes of > 200 nucleotides, 
which allow increased stability and resistance against 
RNase degradation in the peripheral circulation. circR-
NAs are abundant and diverse, with a half-life > 48 h, that 
facilitate easier detection [117–119]. circRNA expres-
sion differs between primary and metastatic sites and 
is thought to play a role in regulation of ovarian can-
cer. A recent study found that the expression levels of 
circular RNAs are inversely associated with activating 
many signalling pathways involved in tumour metas-
tasis (i.e., NF-κB, PI3k, AKT, and TGF-β) [120]. Using 
RT-qPCR in a sample of 83 EOC patients compared to 
166 benign or healthy controls, Hu and colleagues found 
that CircBNC2 was associated with histological grade, 
serous subtype, and distant metastasis [121]. Similarly, 
lncRNAs were found to contribute to the early patho-
genesis, progression, metastasis and chemoresistance 
of recurrent ovarian cancer [122–124]. Although there 
is emerging evidence suggesting an association between 
differing expression levels of lncRNAs (H19, LSINCT5, 
XIST, CCAT2, HOTAIR, AB073614, and ANRIL) and 
clinical progression or treatment response of ovarian 
cancer, the diagnostic sensitivity and specificity of lncR-
NAs remain to be fully elucidated [125–130]. To date, no 
lncRNA has been approved for clinical utility and further 
research is required to identify the most clinically rel-
evant candidates with cancer-enriched or specific signa-
tures in ovarian cancer.

TEPs: RNA content
Tumour-educated platelets (TEPs) play an important 
role in local and systemic responses to tumour growth. 
Platelets are normally anucleate, although they may 
contain residual mRNA and miRNA derived from their 
megakaryocyte precursors or captured from intercel-
lular interactions in the circulation. Platelet education 
denotes the transfer and sequestration of biomolecules 
from tumour cells into platelets [131, 132]. External fac-
tors in the tumour microenvironment such as stromal 
and immune cell signals may activate platelet surface 
receptors to induce specific splice events of pre-mes-
senger RNAs (pre-mRNAs) in circulating platelets [133, 

134]. Key advantages of TEPs include their high abun-
dance, easy isolation, and high-quality RNA that may 
be processed according to external signals. Therefore, 
TEPs have a dynamic mRNA repertoire with both spe-
cific splice events in response to external signals and 
direct ingestion of spliced circulating mRNA that may 
provide useful diagnostic information in ovarian cancer. 
Best et  al. first studied the diagnostic potential of TEPs 
by mRNA sequencing in patients with various cancers 
[135]. This study found that TEPs were able to distinguish 
cancer patients from healthy controls with a high accu-
racy of up to 96% and detect the primary tumour location 
with 71% accuracy. Later, Piek et al. concluded that TEPs 
can differentiate early stage ovarian cancer from benign 
pathologies with 80% accuracy [136]. An ongoing clini-
cal trial (NCT04022863) may further build upon these 
results by examining the accuracy of TEPs and ctDNA in 
determining the nature of ovarian tumours and provide 
information on its diagnostic potential [137]. Interest-
ingly, a recent retrospective cohort study by Giannakeas 
et al. examined the association between thrombocytosis 
(platelet count greater than 450 × 109/L) and cancer. By 
studying 53,339 adults aged 40–75 years who developed 
thrombocytosis with normal platelet count in the previ-
ous 2  years and no malignancy history, they estimated 
the risk of cancer in a 10-year follow-up period [138]. The 
authors reported that the 2-year relative risk (RR) was 
highest for ovarian cancer (RR = 7.11; 95% CI, 5.59–9.03), 
while the 6-month RR for developing ovarian cancer was 
even higher (RR = 23.33; 95% CI, 15.73–34.61). In the 
future, TEPs profiling with complementary ctDNA/CTC 
analysis and platelets quantification may potentially be a 
blood-based method for cancer diagnostics.

Exosomes: content analysis
Interest in the diagnostic and prognostic potential of 
exosomes has increased in recent years. Exosomes are 
extracellular vesicles (EVs) typically 30–100 nm in diam-
eter. Such vesicles are extremely stable and can survive 
under extreme conditions. Exosomes are released from 
both normal and tumour cells. Likewise, they are found 
in various body fluids, such as saliva, plasma, urine, 
ascites, and cerebrospinal fluid [139]. Exosomes can par-
ticipate in local and distant signalling by fusing with the 
membrane of the recipient cell or attaching to receptors 
on the cell’s surface. In cancer, exosomes have the ability 
to enhance tumorigenesis [140], help tumour cells escape 
the immune system [141], and cause treatment resistance 
[142]. Likewise, exosomes can enter the circulation and 
increase the likelihood of metastasis by preparing dis-
tant tumour microenvironments [143, 144]. Exosomes 
have been also used as therapeutics to successfully elimi-
nate tumour cells [145]. Furthermore, exosomes contain 
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tumour-specific proteins, lipids, DNA, and RNA mak-
ing them potential diagnostic biomarkers in cancer. For 
example, exosomes with heat shock protein (HSP70) 
expressed on their membrane, are observed more in 
ovarian, breast, and lung cancer samples compared to 
healthy controls [146]. Additionally, studies have shown 
increased total exosome concentrations in serum sam-
ples of EOC patients [109, 111].

Exosomes can carry significant quantities of miRNAs. 
Multiple studies have observed differences between the 
miRNA profiles of exosomes in EOC patients and healthy 
controls. Meng et  al. showed that the concentrations of 
miR-200b and miR-200c are higher in exosomes obtained 
from patients with stage III–IV EOC and are associ-
ated with significantly shorter OS [111]. Another study 
showed that the miRNA profiling of circulating exosomes 
using a modified magnetic-activated cell sorting (MACS) 
technique can differentiate between benign and malig-
nant ovarian tumours [109]. Additionally, exosomes 
derived from EOC patients have higher concentra-
tions of TGFB1 and melanoma-associated antigen 3 
(MAGE3) and MAGE6 [147]. EOC exosomes also have a 
higher concentration of Claudin 4 that is associated with 
tumour stage and CA125 levels [148]. CD24 and EpCAM 
were also shown to be elevated in exosomes isolated 
from EOC plasma samples [149]. Furthermore, Liang 
et al. identified 2,230 proteins in exosomes secreted from 
OVCAR-3 and IGROV1 ovarian cancer cell lines. Many 
of these identified proteins were involved in tumorigen-
esis and metastasis, indicating the prognostic potential of 
exosomal profiling [150]. Overall, exosomal profiling can 
act as a cancer-specific diagnostic and prognostic bio-
marker and replace invasive cell biopsies. However, more 
comprehensive clinical studies are required to determine 
the clinical value of this approach.

Clinical applications of liquid biopsy for ovarian 
cancer
Liquid biopsy is a non-invasive method with emerging 
evidence for its utility in screening and longitudinal mon-
itoring of ovarian cancer. Different tumour components 
may be analyzed within collected plasma samples to pro-
vide earlier diagnosis, prognostication, molecular tar-
gets for therapy, and detection of resistance to treatment 
(Fig. 3). A summary of the key advantages, disadvantages 
and main clinical applications of each liquid biopsy com-
ponent is provided in Fig. 4.

Early diagnosis of ovarian cancer
The early detection of ovarian cancer is critical in 
reducing mortality and morbidity. Staging is the most 
important prognostic factor in determining recur-
rence-free survival (RFS), with stage I or II diseases 

having significantly longer RFS and OS compared to 
more advanced stages [151]. Therefore, biomarkers that 
allow for the diagnosis of OC in stages I-II may extend 
survival and improve patient outcomes.

Two-thirds of EOC cases are diagnosed at advanced 
stages, with a significantly worse prognosis [152]. Inter-
estingly, several studies have suggested the diagnostic 
potential of promoter methylation that leads to epige-
netic inactivation of tumour suppressor genes as an early 
event during ovarian cancer pathogenesis [153–160]. 
Analysis of ctDNA methylation status in pre-operative 
plasma samples from ovarian cancer patients with both 
early (stage I-II) and advanced-stage disease (stage III-
IV) demonstrated a significant association with abnor-
mal methylation of tumour suppressor genes compared 
to healthy controls [154, 157, 158]. Specifically, the 
detection of hypermethylation in promoter regions of 
tumour suppressor genes RUNX3, TFPI2, RASSF1 and 
RASSF2 from plasma samples has been reported for the 
diagnosis of ovarian cancer, although these markers are 
also implicated in other cancers [153–160]. Despite the 
potential for identifying aberrant gene promoter meth-
ylation to detect malignancies, its utility remains limited 
by the concentration of extracted ctDNA available for 
analysis. Earlier stages of EOC are often asymptomatic 
and are correlated with lower concentrations of ctDNA 
[159, 160]. There is currently limited evidence regard-
ing the application of liquid biopsy for the early detec-
tion of ovarian cancer at pre-symptomatic stages. Only 
one study by Widschwendter et al. conducted in the early 
screening setting reported that methylation in a set of 
epigenetic markers including COL23A1, C2CD4D and 
WNT6is able to detect EOC up to 2 years before clinical 
diagnosis with a sensitivity of 23% and specificity of 97% 
[161]. This study used reduced representation bisulfite 
sequencing (RRBS) to analyze samples collected from 
100,000 asymptomatic women and 43 cases of ovarian 
cancer. It remains difficult to conduct  screening stud-
ies for EOC due to the relatively low incidence and large 
sample sizes required.

Other approach is looking for gene mutations rather 
than methylation changes. The sensitivity and specificity 
of mutation detection are important considerations when 
applying liquid biopsies for the early diagnosis of ovar-
ian cancer. ctDNA has better diagnostic performance 
compared to traditional CA-125 with several studies 
demonstrating that quantitative analysis of ctDNA has 
a relatively high specificity of 88% and sensitivity rang-
ing from 27–100% [92, 162–168]. A recent systematic 
review of 23 studies evaluating ctDNA for the diagnosis 
of EOC in symptomatic patients preoperatively yielded 
similar results [89, 96, 153, 154, 156–158, 160–162, 166, 
167, 169–179]. Other studies that evaluated ctDNA 
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analysis in HGSOC patients for TP53mutation detec-
tion, reported high sensitivity (75–100%) and specificity 
(> 80%) [45, 89–91]. For stage I-II disease, Phallen et  al. 
observed a sensitivity of 68% and a specificity of 100%. 
The researchers used TEC-Seq and ddPCR for ctDNA 
detection and found detectable mutations in driver genes 
for over two-thirds of stage I-II ovarian cancer cases [89]. 
More recently, Barbosa et. al used NGS and a custom 
panel of 27 genes to analyze tumour and matched plasma 
samples from 96 ovarian cancer patients and detected 
tumour somatic variants in 75% of patients with stage 
I disease [180]. Cohen et  al. analyzed circulating pro-
tein biomarkers and genetic alterations in cfDNA using 
a commercial blood test called CancerSEEK [177]. This 
test used 61 amplicons for massively parallel sequenc-
ing to increase sensitivity while minimizing any changes 
in specificity. The authors reported that ctDNA detected 
in ovarian cancer with a sensitivity of 98% and specificity 

of 99%, however, the early-stage detection rate was only 
38% [177].

CTC is another liquid biopsy component that has 
been studied for early EOC detection. Zhang et. al used 
immunomagnetic bead screening, targeting epithelial 
markers EpCAM, HER2, and MUC1 on ovarian cancer 
cells, combined with multiplex RT-qPCR analysis of iso-
lated mRNA from CTCs and tumour tissues for detect-
ing CTCs in 109 EOC patients. This study showed that 
patients with stage IA-IB disease have a much higher 
CTC positive rate (93%) compared to the CA-125 posi-
tive rate (64%) in the same patients [181]. In 2018, Guo 
et  al. prospectively enrolled 61 women with suspi-
cious ovarian masses to investigate the diagnostic value 
of CTCs. The researchers used microfluidic isolation 
and immunofluorescent staining to identify and quan-
tify CTCs and determined the sensitivity of CTCs using 
receiver operating characteristic (ROC) curve analysis to 

Fig. 3  Overview of the five major clinical applications of liquid biopsy in ovarian cancer. Earlier in the disease course, sample analysis for ovarian 
cancer biomarkers can allow earlier diagnosis. Following primary debulking surgery, liquid biopsy can detect minimal residual disease as a 
prognostic indicator and allow for earlier detection of recurrent disease. During treatment, liquid biopsy may enhance longitudinal monitoring with 
its non-invasive approach that enables serial sampling. Additionally, liquid biopsy offers the advantage of capturing the entire tumour genome, 
which can help identify novel genetic markers for targeted therapies and detect treatment resistance. ctDNA: circulating tumour DNA, MRD: 
minimal residual disease; AAF: alternative allele frequency
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be 73.3% with a specificity of 86.7%, which was superior 
to CA-125 (sensitivity = 56.7%) [182]. The main challenge 
facing CTC-based diagnostics is the reduced amount of 
CTCs detectable in circulation with lower tumour bur-
dens at early disease stages [15, 182, 183]. In contrast, 
advanced stage tumours release more CTCs that often 
travel with metastatic colonies to distant sites allowing 
for easier detection. As such, detection of CTCs is sig-
nificantly associated with advanced stages (III and IV), 
where the diagnostic performance of CTCs through 
immunocytochemistry (ICC) has been reported to have 
a sensitivity of 76–83% and specificity of 55–95% [21, 25, 

181, 184, 185]. Compared to benign controls, early-stage 
(I-II) and late-stage (III-IV) EOC samples are 8.4 and 
16.9 times more likely to have CTCs, respectively. Like-
wise, significantly lower levels of CTCs are found in stage 
I patients compared to advanced stages [181]. Current 
studies on utilizing CTC for early diagnosis of ovarian 
cancer are limited by small sample sizes and future well-
powered studies are warranted to confirm these findings.

Although some studies have suggested the diagnostic 
potential of miRNA expression profiling and exosome 
analysis in ovarian cancer, further research is required to 
determine their diagnostic sensitivity and specificity in 

Fig. 4  Comparison of five liquid biopsy components and the main advantages, disadvantages, and future directions of their clinical application in 
ovarian cancer management
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early-stage disease. For example, Todeschini et  al. ana-
lyzed two cohorts consisting of 168 stage III-IV HGSOC 
patients and 65 healthy controls and demonstrated the 
clinical potential of miR-1246 as a diagnostic biomarker 
for HGSOC with a significant increase in the expression 
of miR-1246 in post-operative serum samples of HGSOC 
compared to healthy individuals. This study used a novel 
microarray data normalization to identify candidate diag-
nostic miRNAs followed by signature validation with RT-
qPCR. The study reported a significant over-expression 
of miR-1246, miR-595, and miR-2278 in HGSOC patients 
and the highest detection performance for miR-1246, 
with a diagnostic sensitivity of 87%, specificity of 77%, 
accuracy of 84%, and AUC of 0.89 [184]. Similarly, the 
clinical potential of exosomes have also been suggested 
in ovarian cancer. Zhang et. al analyzed plasma samples 
from 40 stage III or IV EOC patients versus 40 healthy 
controls to investigate the role of four exosome proteins 
including Lipopolysaccharide Binding Protein (LPB), 
Fibrinogen Gamma Chain (FGG), Fibrinogen Alpha 
Chain (FGA) and Gelsolin (GSN) as diagnostic biomark-
ers [186]. This study reported significantly elevated FGA 
and GSN levels and significantly downregulated FGG and 
LBP levels in the ovarian cancer group. FGA conferred 
the highest diagnostic sensitivity among the 4 candidates 
with an AUC of 0.8459. In another study with 78 EOC 
patients (63 stage III-IV and 7 stage I-II) and 30 healthy 
controls, Schwich et  al. reported a seven-fold increase 
in HLA-G levels in plasma circulating exosomes of EOC 
patients (mean 14.3 ng/mL) compared to healthy controls 
(1.9 ng/mL) [187]. Therefore, studies to date on miRNA 
and exosome analysis have been conducted mainly 
in patients with advanced ovarian cancer, and future 
research is needed to elucidate their diagnostic utility for 
early-stage disease. Table 1 summarizes the studies inves-
tigating the clinical application of liquid biopsy analytes 
in ovarian cancer diagnosis.

Detecting recurrence and determining prognosis 
in ovarian cancer
There is ongoing research examining the clinical appli-
cation of liquid biopsy to identify microscopic residual 
disease following primary debulking surgery as a prog-
nostic indicator, predict survival outcomes, and for 
earlier detection of disease recurrence. Clinically, the 
implementation of liquid biopsy may aid in selecting 
individuals at greater risk of relapse for consideration of 
alternative management approaches and potential inclu-
sion in clinical trials.

The strongest evidence to date on the prognostic util-
ity of liquid biopsy is for ctDNA [188, 189]. Quantitative 
analysis of ctDNA demonstrate that ctDNA concentra-
tions are positively correlated with advanced stages of 

EOC and may indicate response to treatment [188–192]. 
ctDNA concentrations are more associated with earlier 
progression and decreased response to treatment than 
CA-125 or imaging [162–164, 193]. Pereira et  al. used 
qPCR and targeted sequencing to quantify ctDNA lev-
els immediately following surgery in 22 EOC patients. 
This study found that undetectable levels of ctDNA at 
6  months postoperatively were associated with signifi-
cantly improved PFS (P = 0.001) and OS (P< 0.05) [163]. 
Another study examining TP53 mutations in ctDNA 
of relapsed HGSOC patients highlighted the prog-
nostic ability of TP53, with a less than 60% decrease in 
TP53  mutant allele fraction after one cycle of chemo-
therapy associated with poor response and shorter PFS 
compared to a decrease of more than 60% [164]. Simi-
larly, a recent study with 48 HGSOC patients found that 
approximately 80% of patients classified as having no sur-
gical residual disease had detectable ctDNA. This study 
reported that these patients had a higher mortality risk 
compared to those who did not have detectable post-sur-
gery ctDNA with a 5-year survival rate of 58.3% for those 
with detectable ctDNA, compared to 85.7% for those 
with undetectable ctDNA [193]. Although most studies 
were limited by small sample sizes, all authors concluded 
that analyzing ctDNA through liquid biopsy has potential 
as a prognostic biomarker in clinical settings.

Furthermore, there is also evidence supporting the 
role of ctDNA in detecting recurrent disease. Up to 85% 
of EOC patients can experience recurrence following 
first-line therapy. Recurrence of EOC limits the survival 
of patients and is often referred to as incurable. CA-125 
and imaging techniques such as CT and PET-scans are 
used as traditional recurrence markers [194]. However, 
recent studies have shown that ctDNA quantification 
can potentially improve the detection of relapse com-
pared to traditional imaging techniques and CA-125 
[188, 190]. Similarly, Parkinson et  al. examined TP53 
mutations in ctDNA of relapsed HGSOC patients and 
reported that ctDNA was detected at ≥ 20 amplifiable 
copies/mL of plasma in nearly all relapsed patients with 
disease volume > 32 cm3 [164]. Likewise, Minato et  al. 
detected ctDNA in all patients with recurrent EOC using 
droplet digital PCR, while no ctDNA was detected in 
recurrence-free patients. In the majority of cases, ctDNA 
was detected before CA-125 levels indicated recurrence 
[195]. These results are consistent with the study by 
Pereira et al. that reported a mean predictive lead time of 
7 months for ctDNA over CT imaging for the detection 
of recurrence [163]. As a result, ctDNA has the potential 
to be used as an early detection tool for EOC recurrence.

CTCs have also demonstrated prognostic potential 
in ovarian cancer. In a study by Marth et  al., immuno-
beads coated with MOC-31 antibodies were used to 
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isolate CTCs from blood samples of 90 EOC patients. The 
authors did not find an association between the detection 
of CTCs and poor prognosis [18]. Using the CellSearch 
system, Poveda et al. found that among 216 ovarian can-
cer patients after primary debulking surgery and diag-
nosis of recurrence with failed first-line chemotherapy, 

those with higher CTC levels, defined as ≥ 2 CTCs per 
7.5  mL blood, had a 2.06-fold (p = 0.003) higher over-
all mortality risk and 1.89-fold (p= 0.003) higher risk of 
progression on doxorubicin treatment [183]. On the con-
trary, a multivariate analysis conducted by Marth et. al 
reported no statistically significant correlation between 

Table 1  Liquid biopsy analytes and potential utility as diagnostic biomarkers

Analyte Author, Year Tumour 
Subtype and 
Staging

Number 
of 
patients

Laboratory Technique Detection Rate Ref

CTCs Zhang et al., 2018 Stage I-IV EOC 109 Immunomagnetic bead screening, 
Multiplex RT-PCR

90% [181]

Guo et al., 2018 Stage I-IV EOC 30 Microfluidic isolation and immuno-
fluorescent staining

73% [182]

Pearl et al., 2014 Stage I-IV EOC 129 CAM-based identification platform Sensitivity = 83%
PPV = 97.3%

[184]

Poveda et al., 2011 Stage I-IV EOC 216 CellSearch system and reagents 
(Veridex)

14.4% had 2 or more CTCs prior to 
therapy

[183]

Pearl et al., 2015 Stage I-IV EOC 123 iCTC flow cytometry assay Sensitivity = 83%
Specificity = 97%

[185]

ctDNA Wang et al., 2017 Stage I-IV EOC 194 QIAamp DNA blood mini kit, pro-
moter methylation OPCML, TFPI2 
and RUNX3

Sensitivity = 90.14
Specificity = 91.87

[154]

Dong et al., 2012 Stage I-IV EOC 36 Methylation-specific PCR 80.6% [158]

Wu et al., 2014 Stage I-IV EOC 47 Methylation-specific PCR 51.1% [156]

Bondurant et al., 2011 Stage I-IV EOC 106 Methylation-specific PCR 51% [159]

Liggett et al., 2011 Stage III-IV EOC 30 Microarray-mediated methylation 
assay

Sensitivity = 90.0%
Specificity = 86.7%

[160]

Widschwendter et al., 2017 Stage I-IV EOC 43 Reduced representation bisulfite 
sequencing

Sensitivity = 23%
Specificity = 97%

[161]

Forshew et al., 2012 Stage III-IV EOC 46 Targeted deep sequencing Sensitivity = 97.5%
Specificity = 97.5%

[162]

Du et al., 2018 Stage II-III EOC 21 High-throughput sequencing Sensitivity = 73.7%
Specificity = 100%

[165]

Vanderstichele et al., 2017 Stage I-IV EOC 57 Whole-genome sequencing Sensitivity = 2- to fivefold higher 
than CA-125
Specificity = 99.6%

[166]

Cohen et al., 2016 Stage I-IV EOC 32 DNA sequencing and whole 
genome NIPT

Sensitivity = 40.6%
Specificity = 93.8%,

[167]

Wang et al., 2015 Stage I-IV EOC 114 Multiplex nested methylated 
specific PCR

Sensitivity = 90.14%
Specificity = 91.06%

[155]

Zhang et al., 2013 Stage I-IV EOC 87 Methylation-specific PCR Sensitivity = 89.66%
Specificity = 90.57%

[157]

Dvorská et al., 2019 Stage I-IV EOC 49 Pyrosequencing Sensitivity = 98%
Specificity = 56%

[171]

Su et al., 2009 Stage I-IV EOC 26 Methylation-specific PCR Sensitivity = 73%
Specificity = 75%

[172]

Melnikov et al., 2009 Stage I-IV EOC 33 Microarray mediated methylation 
assay

Sensitivity = 85%
Specificity = 61%

[175]

Singh et al., 2020 Stage I-IV EOC 70 TaqMan based qPCR assay Sensitivity = 89%
Specificity = 100%

[176]

Cohen et al., 2018 Stage I-III EOC 54 Combined assays for genetic 
alterations and protein biomarkers 
(CancerSEEK)

Sensitivity = 98%
Specificity = 99%

[177]

Exosomes Schwich et al., 2019 Stage I-IV EOC 78 Nanoparticle tracking analysis, 
ELISA

100% [187]
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the presence of CTCs in the bloodstream before surgery 
and PFS or OS. This study reported a mean overall sur-
vival of 25 and 28 months for patients with and without 
detected CTCs, respectively [18]. Similarly, Judson et al. 
analyzed pre-operative blood samples from 64 EOC 
patients and reported no significant difference in the 
OS (p = 0.96) or PFS (p= 0.72) between patients with 
and without detectable CTCs at a mean follow-up of 
18.7  months [196]. Given this controversy, Huang et  al. 
subsequently conducted a meta-analysis including 1285 
patients from 2 clinical trials and 13 retrospective stud-
ies that demonstrated a significant association between 
the presence of CTCs before treatment with surgery or 
chemotherapy and both OS (HR = 1.79, 95% CI:1.43–
2.24, p < 0.00001) and PFS (HR = 1.59, 95%CI:1.30–1.94, 
p < 0.00001) [197]. Other studies have suggested that the 
number of CTCs may be a potential prognostic factor for 
EOC patients, but the results are limited by small sample 
sizes and contradictory findings [21, 181–183, 198–201]. 
For example, some studies highlighted the prognostic 
role of CTCs, showing that the amount of pre-operative 
or post-adjuvant chemotherapy CTCs was associated 
with poor prognosis reflected in both PFS or OS [21, 181, 
183, 199–201]. However, the results of these studies are 
inconsistent with other investigations that failed to find 
similar associations [22, 182, 198].

Currently, the prognostic value of other liquid biopsy 
components including cell-free miRNAs and exosomes 
lacks enough evidence for clinical applications. Several 
limiting factors in cell-free miRNAs studies, including 
the lack of standardized experimental procedures, var-
ied normalization processes, and the inadequately pow-
ered sample sizes for statistical analysis have contributed 
to the controversy in this domain [110, 111, 186, 202, 
203]. Several studies have supported the prognostic role 
of cell-free miRNAs such as miR-200 family, particu-
larly miR-200a, miR-200b, and miR-200c [110, 111, 202, 
203]. In another study with 40 EOC patients, Zhang et al. 
used Western blot analysis and enzyme-linked immu-
nosorbent assay (ELISA) to analyze exosomal protein 
markers [186]. The study reported high levels of fibrino-
gen gamma chain (FGG) or lipopolysaccharide binding 
protein (LBP) mRNA expression were associated with 
worse prognosis and shorter PFS and OS for patients 
with EOC (FGG: OS HR = 0.79, P = 0.001 and PFS 
HR = 0.77, P < 0.001 for LBP: OS HR = 0.81, P = 0.003 and 
PFS HR = 0.77, P< 0.001) [186]. Since EVs contain sev-
eral different tumour-derived components, EVs may be 
a promising all-in-one prognostic biomarker, providing 
information on the tumour and its microenvironment. 
However, the absence of a standardized approach for 
cell-free miRNA and EVs isolation and the small sample 
sizes of current studies limit the ability to draw definitive 

conclusions and require future validation in larger 
cohorts. Table 2 summarizes the studies investigating the 
clinical application of liquid biopsy analytes as prognostic 
biomarkers in ovarian cancer.

Predicting and monitoring response to treatment
Although most ovarian cancer patients achieve complete 
remission after primary debulking surgery and adjuvant 
chemotherapy, up to 70% of patients develop recurrence 
due to chemoresistance. Intra-tumour heterogeneity has 
been proposed as the main cause of drug resistance and 
treatment failure in ovarian cancer [205]. Intra-tumour 
heterogeneity refers to the genomic variations within a 
lesion that arise from tumour cell evolution during the 
multistep tumorigenesis process. Clonal development 
from a single malignant cell into a functionally hetero-
geneous tumour mass is shaped by the tumour microen-
vironment and adaptation to various external selection 
pressures (e.g. evasion of apoptosis, self-sufficient cell 
proliferation, acquisition of replicative immortality). 
Subclones may evolve and expand in a sequentially lin-
ear fashion, or they may follow branched trajectories by 
continuing to diverge during their evolution trajectory 
(Fig. 5) [206, 207]. The molecular characterization of all 
ovarian cancer subclones is crucial for selecting appro-
priate targeted therapy and identifying acquired resist-
ance in tumour cell clones over time. Liquid biopsy can 
potentially offer more comprehensive analysis of tumour 
heterogeneity and allow  longitudinal monitoring of 
tumour evolution over the course of treatment.

The ability of ctDNA to reflect tumour heterogene-
ity is useful for predicting resistance to platinum-based 
chemotherapy, in addition to both primary and acquired 
resistance to PARPi. Approximately half of HGSOC 
patients have a Homologous Recombination Repair 
(HRR) deficiency leading to an impaired ability to repair 
double-stranded DNA breaks and increased sensitivity 
to the alkylating action of platinum-based chemothera-
pies that induce DNA damage [208]. BRCA​ mutated 
cells also depend on single-stranded DNA repair mecha-
nisms involving Poly ADP-ribose Polymerase (PARP), 
which results in susceptibility to the synthetic lethality 
of PARPi [209]. Although ovarian tumours with patho-
genic BRCA1/2 variants have demonstrated increased 
sensitivity to platinum-based chemotherapy and PARPi, 
the majority will subsequently develop treatment resist-
ance. Mechanisms leading to treatment resistance may 
be categorized broadly into two types. One of these 
is the small subclonal tumour cells that do not have 
the BRCA1/2  mutations, and after starting treatment, 
become the main clone that does not respond to  tar-
geted treatment. The second mechanism is through 
acquired reversion mutations located close to the initial 
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loss-of-function variant that effectively restore functional 
protein production [210, 211].

Longitudinal monitoring of BRCA​ mutation evolu-
tion in HGSOC patients during PARPi therapy may be 
achieved with serial cfDNA sampling. Previous stud-
ies have demonstrated that both germline and somatic 

BRCA reversion mutations can be detected in the cfDNA 
of patients with HGSOC [212, 213]. In the ARIEL2 trial, 
Lin et. al assessed the association between BRCA​ rever-
sion mutations and clinical efficacy of adjuvant PARPi 
treatment. This study included 112 HGSOC patients 
with germline or somatic BRCA1/2 mutations and used 

Table 2  Liquid biopsy analytes and potential utility as prognostic biomarkers

OS Overall Survival, PFS Progression-Free Survival, NS Not Significant, TTP Time to Progression

Analyte Author, Year Tumour 
Subtype and 
Staging

Number 
of 
patients

Laboratory Technique Prognostic Significance Ref

CTCs Zhang et al., 2018 Stage I-IV EOC 109 Immunomagnetic bead screening, 
RT-PCR

OS (p = 0.041) [181]

Poveda et al., 2011 Stage I-IV EOC 216 CellSearch system and reagents OS (p = 0.0017)
PFS (p = 0.00024)

[183]

Judson et al., 2003 Stage I-IV EOC 64 Immunocytochemical assay NS [196]

Aktas et al., 2011 Stage I-IV EOC 122 AdnaTest BreastCancer, RT-PCR OS (p = 0.0054) [199]

Chebouti et al., 2017 Stage I-IV EOC 65 AdnaTest Ovarian Cancer, RT-PCR OS (p = 0.0008)
PFS (p = 0.0293)

[200]

Kuhlamann et al., 2014 Stage I-IV EOC 143 Multiplex RT-PCR, immunomagnetic 
CTC enrichment

OS (p = 0.026)
PFS (p = 0.009)

[16]

Obermayr et al., 2013 Stage I-IV EOC 216 RT-qPCR, microarray analysis OS (p = 0.001)
PFS (p = 0.001)

[21]

Obermayr et al., 2017 Stage I-IV EOC 266 Density gradient centrifugation, 
immunostaining, FISH

OS (p = 0.007)
PFS (p = 0.008)

[201]

ctDNA Giannopoulou et al., 2017 Stage I-IV EOC 59 Methylation-sensitive high-resolu-
tion melting analysis (MS-HRMA) 
assay

OS (p = 0.023) [153]

Pereira et al., 2015 Stage I-IV EOC 10 Droplet digital PCR OS (p = 0.0011)
PFS (p = 0.0194)

[163]

Parkinson et al., 2016 Stage I-IV EOC 40 Microfluidic digital PCR TTP (p = 0.008) [164]

Swisher et al., 2005 Stage I-IV EOC 137 DNA sequencing, PCR OS (p = 0.02) [58]

Giannopoulou et al., 2018 Stage I-IV EOC 53 Methylation-specific PCR OS (p = 0.027)
PFS (p = 0.041)

[170]

No et al., 2012 Stage I-IV EOC 36 Copy number assay, qPCR OS (HR = 33.6, 95% CI = 1.8–634.8)
DFS (HR = 18.2, 95% CI = 2.0–170.0)

[178]

Kuhlmann et al., 2012 Stage I-IV EOC 63 PCR-based fluorescence microsatel-
lite analysis

OS (p = 0.030) [179]

Pearl et al., 2014 Stage I-IV EOC 129 CAM-based identification platform CTCs were better correlated with 
worse OS and PFS compared to 
CA125

[184]

Pearl et al., 2015 Stage I-IV EOC 123 iCTC flow cytometry assay CTCs more sensitive to progressive 
disease and relapse compared to 
CA125

[185]

Minato et al., 2021 Stage I-IV EOC 11 Droplet digital PCR Earlier recurrence detection com-
pared to CA125

[195]

Kim et al., 2019 Stage II-IV EOC 61 Droplet digital PCR TTP (p = 0.038) [189]

Paracchini et al., 2020 Stage III-IV EOC 46 Shallow whole-genome sequenc-
ing

PFS (p = 0.011) [204]

cfRNA Zuberi et al., 2015 Stage I-IV EOC 70 Trizol method Disease progression (p = 0.001) [189]

Halvorsen et al., 2017 Stage I-IV EOC 207 TaqMan Low Density Arrays, RT-
qPCR

OS (p = 0.012)
PFS (p = 0.006)

[203]

Zhang et al., 2019 Stage I-IV EOC 40 liquid chromatography tandem 
mass spectrometry

OS (p = 0.0012)
PFS (p = 0.00038)

[186]

Exosomes Schwich et al., 2019 Stage I-IV EOC 78 Nanoparticle tracking analysis, ELISA PFS (p = 0.029) [187]
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NGS to analyze plasma cfDNA collected prior to PARPi 
treatment with rucaparib after disease progression on 
platinum-based chemotherapy. The researchers found 
that the absence of reverse BRCA​ mutations in pre-
treatment cfDNA was associated with a longer PFS on 
rucaparib with a median PFS of 9.0  months, compared 
to 1.8  months in patients with detectable BRCA​ rever-
sion mutations in their cfDNA (HR 0.12; p < 0.0001). In 
addition, this study also sequenced 78 post-progression 
cfDNA samples to examine acquired resistance and iden-
tified an additional 8 patients with novel BRCA  rever-
sion mutations not initially found in pre-treatment 
cfDNA, suggesting the ability of cfDNA to monitor 
dynamic changes in BRCA​  mutational status over time 
[212]. Other studies have reported a similar association 
between detection of BRCA1/2 reversion mutations in 
plasma ctDNA and resistance to adjuvant platinum and 
PARPi therapy (Table  3) [213, 214]. Christie et  al. con-
ducted a prospective study with 30 HGSOC patients with 
a germline BRCA1/2 mutation to determine whether 
cfDNA analysis could predict chemotherapy response 

in both the neoadjuvant and adjuvant setting. In this 
study, paired tumour and plasma samples were collected 
for two cohorts of patients: one cohort comprised 14 
patients receiving treatment prior to primary debulk-
ing surgery and the second cohort included 16 patients 
receiving treatment after recurrence with previous adju-
vant platinum-based chemotherapy. The researchers 
used targeted NGS to first screen tumour samples for 
germline BRCA1/2 mutation or reversion status before 
analyzing cfDNA. This study only detected BRCA1/2 
reversion mutations in tumour samples of 31.3% (5 of 
16) patients in the second cohort with recurrent disease, 
among which 18.8% (3 of 5 patients) also had detectable 
reversions in cfDNA. Clinically, all cases with detectable 
reversions in cfDNA subsequently became resistant to 
platinum or PARPi therapy. Routine monitoring through 
liquid biopsy may therefore allow for earlier detection of 
resistance and selection of more personalized combina-
tion therapies (i.e. alternative chemotherapies, targeted 
therapies or immunotherapy) targeting different onco-
genic drivers to reduce the risk of resistance.

Fig. 5  The utility of liquid biopsy during different stages of tumour progression. The molecular profile of the primary tumour changes as 
cancer progresses. New mutations and treatments can lead to intra-tumour heterogeneity. Furthermore, heterogeneity causes drug resistance 
and treatment failure. Liquid biopsy can aid in the detection of primary ovarian tumours (A). The prognosis of EOC patients can potentially be 
determined by liquid biopsy (B). Likewise, this technique can help with the detection of residual disease after primary debulking surgery and 
contribute to the detection of EOC recurrence (C). Physicians can potentially use liquid biopsy to uncover the molecular profile of the tumor and 
select the correct therapy for each patient (D). Liquid biopsy can also reflect tumour heterogeneity and predict resistance to platinum-based 
chemotherapy in addition to both primary and acquired resistance to PARPi (E)
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Table 3  Clinical utility of ctDNA as liquid biopsy for predicting and monitoring response to treatment

Author, Year Tumour 
Classification

Sample Size Laboratory 
Methodology

Detected 
Abnormality

Treatment Protocol Clinical Application Ref

Gifford et. al, 2004 Stage Ic-IV EOC 138 Microsatellite PCR hMLH1 methylation Paclitaxel/doc-
etaxel + carboplatin

Response monitoring [215]

Swisher et al., 2005 Stage I-IV EOC 137 DNA sequencing p53 mutation Taxane + platinum 
agent

Response monitoring [58]

Capizzi et al., 2008 Stage III-IV EOC 22 RT-PCR Serum level Carboplatin + pacli-
taxel or carboplatin 
only

Response monitoring [216]

Kamat et al., 2010 Stage I-IV EOC 164 RT-PCR Beta-globin Platinum agent Response monitoring [217]

Wimberger et al., 2011 Stage Ib-IV EOC 62 Fluorescence Fluorimetry Carboplatin + pacli-
taxel

Response monitoring [218]

Forshew et al., 2012 HGSOC 38 TAm-Seq, dPCR TP53, PTEN, BRAF, 
KRAS, EGFR, PIK3CA 
mutations

Carbopl-
atin + paclitaxel or 
epirubicin + cispl-
atin + capecitabine

Response monitoring [162]

Murtaza et al., 2013 Stage III-IV 3 NGS, qPCR RB1, ZEB2, BUB1, 
CES4A, MTOR, PARP8 
mutations

Cisplatin, paclitaxel or 
carboplatin + pacli-
taxel

Response monitoring [168]

Choudhuri et al., 2014 Stage IIIb/c 100 RT-PCR Serum level Carboplatin + pacli-
taxel

Response monitoring [219]

Martignetti et al., 2014 Stage IIIc Serous 
Papillary

1 RT-PCR FGFR2 fusion tran-
script

Carboplatin + pacli-
taxel (total 5 lines of 
treatment)

Response monitoring [220]

Pereira et al., 2015 Stage I-IV Serous 22 WES, ddPCR, TGS TP53, PTEN, PIK3CA, 
MET, KRAS, FBXW7, 
BRAF mutations

Platinum + taxane 
agent

Response monitoring [163]

Piskorz et al., 2016 HGSOC 18 NGS TP53 mutation Platinum agent Response monitoring [91]

Parkinson et al., 2016 Relapsed HGSOC 40 Digital PCR TP53 mutation Heterogeneous stand-
ard of care treatment

Response monitoring [164]

Flanagan et al., 2017 Relapsed Stage I-IV 
Serous

247 NGS Methylation at CpG 
sites

Platinum agent Response monitoring [221]

Widschwendter et al., 
2017

Stage I-IV HGSOC or 
Clear Cell

151 TUC-BS & RRBS COL23A1, C2CD4D 
and WNT6 candidate 
markers

Carboplatin + pacli-
taxel or carboplatin 
only

Response monitoring [161]

Ratajska et al., 2017 Stage I-IV 121 NGS BRCA1/2 mutations PARPi Predict eligibility for 
PARPi

[222]

Christie et al., 2017 Stage I-IV HGSOC 30 NGS BRCA​ reversion muta-
tion

Platinum-based agent 
and/or PARPi

Predict treatment 
response

[213]

Weigelt et al., 2017 Stage III-IV 19 NGS BRCA​ reversion muta-
tion

Platinum-based 
agent ± taxane agent

Response monitoring [214]

Giannopoulou et al., 
2018

Stage I-IV HGSOC 50 RT-MSP ESR1 Carboplatin + pacli-
taxel

Response monitoring [153]

Du et al., 2018 Recurrent Stage II-III 
Serous

21 NGS TP53, BRCA1, NOTCH2, 
DNMT3A mutations 
and CNVs

Platinum-based agent Response monitoring [165]

Morikawa et al., 2018 Stage I-IV Clear Cell 29 ddPCR KRAS, PIK3CA Carboplatin + pacli-
taxel ± docetaxel/
carboplatin/gemcit-
abine/bevacizumab/
CPT-11/irinotecan

Response monitoring [223]

Arend et al., 2018 Stage III-IV HGSOC 14 NGS 50 gene Ion Torrent 
panel

Platinum + taxane 
agent

Response monitoring [188]

Lin et al., 2019 High Grade Serous 
and Endometriod

97 NGS BRCA​ reversion muta-
tion, TP53

PARPi (rucaparib) Predict primary and 
acquired resistance

[212]

Kim et al., 2018 Stage II-IV HGSOC 102 Sanger sequencing/
Digital PCR

TP53 mutation Carboplatin + pacli-
taxel

Response monitoring [189]

Oikkonen et al., 2019 HGSOC 12 NGS ERBB2 amplification Platinum + taxane 
agent ± trastuzumab

Response monitoring [224]

Iwahashi et al., 2019 Stage I-IV HGSOC, 
Mucinous, Endome-
trioid

4 CAPP-seq TP53, APC, BRCA1 and 
KRAS mutations

Carboplatin + pacli-
taxel

Response monitoring [225]
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Other somatic mutations seen more frequently in ovar-
ian cancer may be used for monitoring response to treat-
ment. As the main driver of clonal pathogenic lesions, 
TP53 mutations are in nearly all primary ovarian tumour 
cells, synchronous tumours, and metachronous lesions. 
Detection of TP53 mutations was therefore hypothesized 
to be a suitable biomarker for disease monitoring. Since 
the feasibility of sequencing cfDNA fragments to detect 
tumour-associated TP53 mutation was first reported 
more than 15 years ago, studies have  demonstrated that 
TP53  mutation detection can evaluate tumour burden, 
predict time to progression  (TTP) and detect tumour 
recurrence [58, 91, 162–165, 189, 229, 230]. Similarly, 
another study that used whole-exome sequencing of 
plasma cfDNA to serially quantify allele fractions (AF) in 
plasma identified an increased representation of mutant 
alleles associated with the development of treatment 
resistance in three ovarian cancer patients. The research-
ers found that increased mutant AF of RB1 and ZEB2 was 
associated with cisplatin resistance, while MTOR, CES4A 
and BUB1 mutations were associated with paclitaxel and 
carboplatin resistance, and PARP8 mutation was associ-
ated with liposomal doxorubicin resistance [168].

In terms of other mutations, Forshew et. al reported 
the emergence of a de novo EGFR tyrosine kinase muta-
tion in an HGSOC patient at disease relapse that was not 
present 15  months earlier in the initial tumour sample 
[162]. This patient was identified to be eligible for treat-
ment with gefitinib or erlotinib, however, the treatment 
efficacy and final clinical outcome were not reported. The 
study authors used tagged-amplicon deep sequencing 
(TAm-Seq) and screened 5995 genomic bases for low-
frequency mutations to identify cancer mutations pre-
sent in cfDNA at allele frequencies as low as 2%. More 
recently, Oikkonen et al. conducted a prospective cohort 
study with 78 cfDNA samples collected from 12 HGSOC 
patients collected before, during and after platinum-
based chemotherapy, and detected clinically actionable 
mutations in 7 (58%) of patients. In one patient with 

ERBB2 amplification detected in ctDNA following the 
development of resistance to platinum chemotherapy, 
treatment was changed to trastuzumab with reduced 
dose carboplatin and dose-dense paclitaxel, with signifi-
cant tumour shrinkage and complete normalization of 
CA-125 achieved [224]. Table  3 summarizes the studies 
investigating the clinical application of ctDNA for pre-
dicting and monitoring response to treatment in ovarian 
cancer.

Conclusions and future directions
There is emerging evidence supporting the potential of 
liquid biopsy to enhance ovarian cancer management 
with the goal of improving survival. In the last decade, 
advances made in molecular analysis technologies have 
allowed for increased clinical applications of liquid biopsy 
in the diagnosis, prognosis, and prediction of response to 
treatment in ovarian cancer. The advantages over tradi-
tional biopsies include the ability for earlier detection of 
cancer and identification of microscopic minimal resid-
ual disease following primary debulking surgery, which 
are important considerations in ovarian cancer due to the 
possibility for earlier intervention and improved survival 
outcomes. Liquid biopsy can also capture the heterogene-
ity of ovarian tumours more comprehensively compared 
to conventional tissue biopsy. The non-invasiveness and 
feasibility of liquid biopsy allow for serial sampling and 
longitudinal monitoring to identify treatment resistance 
with tumour evolution over time and guide the selection 
of personalized therapy.

Currently, several challenges remain to be addressed 
prior to more routine utilization of liquid biopsy in ovar-
ian cancer. For example, cfDNA analysis has limited 
sensitivity and specificity for early-stage ovarian can-
cer. Consequently, genetic mutations detected in the 
cfDNA or ctDNA should only be used to guide clinical 
decision-making in conjunction with other biomarkers 
and imaging techniques to improve the overall sensitiv-
ity and specificity. In addition, given the low proportion 

Table 3  (continued)

Author, Year Tumour 
Classification

Sample Size Laboratory 
Methodology

Detected 
Abnormality

Treatment Protocol Clinical Application Ref

Noguchi et al., 2020 Stage III-IV HGSOC 10 CAPP-seq gene mutation 
profiles, blood tumor 
mutation burden

Carboplatin + pacli-
taxel ± bevacizumab

Response monitoring [226]

Han et al., 2020 Stage III-IV EOC 10 NGS 88 genes panel (Axen 
Cancer Panel 1)

Standard chemo-
therapy

Response monitoring [227]

Alves et al. 2020 Stage I-IV Serous, Clear 
Cell, Mucinous

11 qPCR Level Carboplatin + pacli-
taxel, gemcitabine, 
doxorubicin + beva-
cizumab or rucaparib 
(PARPi)

Response monitoring [228]
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of ctDNA in cfDNA, optimization of current isolation 
strategies and improved sensitivity of analysis techniques 
are required to enhance the extraction yield and enable 
ctDNA detection at low allele frequencies. Another 
limitation is the current lack of reproducibility of liquid 
biopsy assays due to the lack of standardization across 
different laboratory workflows. Future studies should 
estimate the technical robustness and reproducibility of 
proposed biomarkers within and between laboratories by 
implementing a standardized procedure. Further stud-
ies examining the specific mechanisms of release, tissue 
of origin and biological significance are also required for 
most liquid biopsy components prior to clinical use.

Another challenge is to elucidate the multifactorial 
processes implicated in the development of chemore-
sistance that contributes to the high mortality rates in 
ovarian cancer. During treatment, regular monitoring 
with liquid biopsy can elucidate drug resistance acquired 
from genetic alterations, which may be present but unde-
tectable with conventional approaches. The implica-
tions of oncogene expression on cancer drug resistance 
remain poorly understood, although there have been 
over 25 oncogenes including KRAS, ERBB2, PIK3CA, 
AKT  hypothesized to contribute to drug resistance in 
ovarian cancer through various signalling pathways [215, 
216, 224]. Genomic-based drug response prediction 
may offer a new horizon in ovarian cancer to improve 
clinical management. However, previous studies on drug 
resistance have been limited to small samples from cer-
tain ovarian cancer cell lines and have focused largely 
on ctDNA analysis [231–233]. In the future, more stud-
ies are required to examine the utility of liquid biopsy in 
predicting treatment response among different ovarian 
cancer subtypes and to compare the efficacy of the vari-
ous liquid biopsy analytes. Further efforts to standardize 
analysis platforms and incorporate liquid biopsies as a 
companion biomarker in large-scale drug trials are also 
warranted.

In conclusion, liquid biopsy has emerged as a promis-
ing alternative to traditional tissue sampling methods for 
its potential utility in the earlier detection and manage-
ment of ovarian cancer. However, current evidence sug-
gests that liquid biopsy may be best used as a second-line 
or complementary diagnostic tool rather than the sole 
biomarker in deciding clinical management. To date, 
most studies evaluating liquid biopsy techniques are lim-
ited by small sample sizes and larger, higher-quality stud-
ies are required to provide more rigorous evidence prior 
to their routine clinical application.
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