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Ovarian cancer (OC) is the most lethal gynecologic malignancy, affecting approximately 1
in 70 women with only 45% surviving 5 years after diagnosis. This disease typically
presents at an advanced stage, and optimal debulking with platinum-based
chemotherapy remains the cornerstone of management. Although most ovarian cancer
patients will respond effectively to current management, 70% of them will eventually
develop recurrence and novel therapeutic strategies are needed. There is a rationale for
immune-oncological treatments (IO) in the managements of patients with OC. Many OC
tumors demonstrate tumor infiltrating lymphocytes (TILs) and the degree of TIL infiltration
is strongly and reproducibly correlated with survival. Unfortunately, results to date have
been disappointing in relapsed OC. Trials have reported very modest single activity with
various antibodies targeting PD-1 or PD-L1 resulting in response rate ranging from 4% to
15%. This may be due to the highly immunosuppressive TME of the disease, a low tumor
mutational burden and low PD-L1 expression. There is an urgent need to improve our
understanding of the immune microenvironment in OC in order to develop effective
therapies. This review will discuss immune subpopulations in OC microenvironment,
current immunotherapy modalities targeting these immune subsets and data from clinical
trials testing IO treatments in OC and its combination with other therapeutic agents.
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INTRODUCTION

Ovarian cancer (OC) is the most frequent cause of death among gynecological malignancies, with a
36% increase in OC incidence being expected by 2040 (source Global Cancer Observatory 2020).
Optimal debulking followed by platinum-based chemotherapy remains the cornerstone of
management (1). For patients with bulky stage III-IV tumors where complete resection cannot
be achieved, neo-adjuvant chemotherapy followed by interval debulking surgery and adjuvant
chemotherapy is a suitable alternative associated with lower morbidity (2, 3). Unfortunately, despite
a response rate of 80% to first line chemotherapy, most patients subsequently relapse resulting in a
five year survival rate of 45% (4). To enhance long-term disease remission, new treatment
approaches are under investigation.

Immunotherapy has demonstrated great potential in treating a variety of cancers, in particular
immune checkpoint inhibitors (ICI) targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
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or Programmed death-ligand 1 (PD-L1)/Programmed cell death
protein 1(PD-1) (5, 6). There is a rationale for immune-oncology
(IO) treatments in OC. Many OC tumors demonstrate tumor
infiltrating lymphocytes (TILs) and the degree of TIL infiltration is
strongly and reproducibly correlated with survival (7, 8). A meta-
analysis including 21 studies and almost 3000 patients with OC
confirmed that high levels of intra-epithelial CD3+ or CD8+ T-cells
were most strongly associated with both improved progression-
free and overall survival (PFS and OS) (9). This positive
correlation suggests that using ICIs, such as anti-PD-L1/PD-1
therapies, could be effective. Contrary to expectations, early
clinical trials showed that their efficacy in OC remains limited
with response rate of 10-15% and no current FDA or EMA
approval (Table 1). PD-L1 expression has emerged as one of the
biomarkers that could predict sensitivity to ICIs (15).
Unfortunately expression remains rare in OC. PD-1 is mainly
expressed by CD4+ and CD8+ T lymphocytes whereas its ligand,
PD-L1 is widely expressed in various cell types including activated
lymphocytes, fibroblasts, tumor-associated macrophages, and
tumor cells. A study showed that almost two thirds of ovarian
tumors demonstrated a modest expression of PD-L1 which was
associated with worst prognosis, mainly on immune cells rather
than tumor cells. In the IMAGYN050 trial, less than 25% of
patients demonstrated >5% PD-L1+ immune cells (16). In
contrast, in tumors known to be immune responsive, such as
non-small cell lung cancer, PD-L1 expression ranges from 24% to
60% (17). The low response rate to PD-L1 inhibition in OC could
be in part explained by the low expression level of PD-L1 on
tumor cells.

Several studies have confirmed the relevance of using
mutational and tumor antigen burden as a predictive
biomarker of response to immunotherapy (18–21). However,
OC is known to harbor a low neoantigen load and mutational
burden (22–24). There is some data to suggest that BRCA
mutated, or homologous recombination deficient OC may
harbor higher levels of ‘personal’ neoantigens presumably due
to their defective DNA repair machinery (25). In addition, OC
have been reported to demonstrate cancer associated antigens
such as NY-ESO-1, mutated p53, Mesothelin, MUC-16, SCP-1…
which could drive immunogenecity (26). In this review we will
discuss the ongoing strategies which are being explored to
Frontiers in Oncology | www.frontiersin.org 2
enhance the antitumor immune response in OC beyond PD-1/
PD-L1 inhibition including: (i) combining anti PD-1/PD-L1
agents with other agents, and (ii) targeting other relevant
immune subsets.
COMBINATION APPROACHES

Poly (ADP-Ribose) Polymerase (PARP)
Inhibitors and ICIs
Approximately 25% of high grade serous ovarian cancer harbor a
germline or somatic mutations in the tumor suppressor genes
BRCA1 or BRCA2 (27, 28). BRCA1/2 mutated OC are associated
with a higher lymphocyte infiltration (25, 29). BRCA1/2 are
involved in DNA damage response via the homologous
recombination (HR) pathway. HR participates in genome
stability by repairing complex DNA damage such as DNA
double-stranded breaks. Several studies have highlighted that
BRCA1/2 mutated OC harbor a higher number of tumor specific
neo-antigenes and demonstrate increased expression of the
immune checkpoint modulators, PD-1 and PD-L1, which
indicated that BRCA1/2 mutated OC may be more sensitive to
PD-1/PD-L1 inhibitors (25). Unfortunately, the JAVELIN 100
trial assessing the efficacy of avelumab (anti-PD-L1) in patients
with previously treated recurrent of refractory OC showed that
BRCA status was not associated with clinical response (30).

Recently, increasing evidence has suggested the importance of
the link between DNA damage and innate immunity (31). PARP
inhibition in Brca1-deficient mouses elicits strong antitumor
immunity via Stimulator of Interferon Genes (STING)
pathway activation (32). PARPi induced STING activation
occurs mainly in tumor cells. This pathway results in release of
interferon related cytokines which in turn increase NK and other
cell mediated cell killing via upregulation in NKG2D ligand for
example. The MEDIOLA trial evaluated the combination of
Olaparib (PARPi) and Durvalumab (anti-PD-L1) in BRCA
mutated platinum-sensitive relapsed OC (33). The objective
response rate was high at 71,9% but should be interpreted with
caution as this response rate could be expected with a PARPi
alone in BRCA altered OC. It is therefore difficult to conclude
TABLE 1 | Results from trials exploring efficacy and safety of single-agent ICIs in OC.

Study Trial identifier Number
of

patients

ORR PFS
(Months)

OS
(Months)

Ref

Efficacy and Safety of Avelumab for Patients With Recurrent or Refractory Ovarian Cancer: Phase 1b
Results From the JAVELIN Solid Tumor Trial

NCT01772004 125 9.6% 10.2 11.2 (10)

A Study of Atezolizumab [an Engineered Anti-Programmed Death-Ligand 1 (PDL1) Antibody] to
Evaluate Safety, Tolerability and Pharmacokinetics in Participants With Locally Advanced or
Metastatic Solid Tumors

NCT01375842 12 22.2% 2.9 113. (11)

Phase IB Study of Pembrolizumab (MK-3475) in Subjects With Select Advanced Solid Tumors NCT02054806 26 11.5% 1.9 13.8 (12)
Efficacy and Safety Study of Pembrolizumab (MK-3475) in Participants With Advanced Recurrent
Ovarian Cancer (MK-3475-100/KEYNOTE-100)

NCT02674061 376 8.0% 1.9 13.8 (13)

Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant
Ovarian Cancer

UMIN00005714 20 15% 3.5 20.0 (14)
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that there was synergistic or even additive benefit to
this combination.

Combination of PARPi and anti-PD-L1 has also been tested
in BRCA wild type OC. The combination of the PARPi niraparib
and pembrolizumab (anti-PD-1) resulted in an encouraging 25%
RR among patients with mainly platinum resistant BRCAwt
recurrent OC (34).

Anti-Angiogenic Agents and ICIs
Vascular endothelial growth factor (VEGF) is a key regulator of
physiological and pathological angiogenesis and plays a major
role in tumorigenesis (35). VEGF is highly expressed in OC
microenvironment (36). It promotes tumor angiogenesis,
enhances vascular permeability and favors peritoneal
dissemination of OC through malignant ascites formation (37).
In addition to its contribution to tumor angiogenesis, VEGF also
has immunosuppressive properties. VEGF inhibits T-cell
function, contributes to the induction and maintenance of
regulatory T cells (Tregs), inhibits functional maturation of
DC, enhances expression of inhibitory immune checkpoint on
CD8+ cells and promotes tumor-associated macrophages (38).
Combining anti-angiogenic agents with ICIs could reverse
immunosuppression mediated by VEGF and thus increase the
efficacy of ICIs in OC. In vitro, VEGF inhibition has been shown
to enhance cytotoxic T-lymphocytes activation and down-
regulate inhibitory molecules associated with T cell exhaustion
(PD-L1, TIM-3, LAG-3 and CTLA-4 (39, 40).

A single-arm phase 2 study of combined nivolumab and
bevacizumab resulted in a 40% and 16% response rate in
platinum-sensitive and -resistant relapsed OC (41).
Combination of the VEGF tyrosine kinase, Lenvatinib with
pembrolizumab resulted in response rate of 29% in relapsed
OC (42). Despite a sound biological rational and hints of activity
in early phase trials of combined PD-L1/VEGF inhibition, a large
phase III randomized clinical trial of 1st line chemotherapy and
maintenance bevacizumab alone or in combination with
atezolizumab failed to demonstrate any benefit to the
combination (16).

Chemotherapy and ICIs
Classical cytotoxic drugshave been shown to alter the local immune
state which could modulate treatment efficacy by stimulating or
inhibiting the host’s anti-tumor immune response (43–45).
Conventional cytotoxics may induce « immunogenic cell death »,
increase DC maturation, potentiate macrophage cytotoxicity and
abrogate Tregs or myeloid-derived suppressor cell activity (46, 47).
Two phase III clinical trials evaluated the combination of avelumab
(anti-PD-L1) to standard chemotherapy and failed to show any
improvement of avelumab addition in the frontline (30) or in the
platinum resistant setting (48).

Anti-CTLA-4 and ICIs
CTLA-4 is a receptor expressed on activated T cells that
downregulate immune response. CTLA-4 is homologous to the
T-cell co-stimulatory protein, CD28, and both molecules binds to
CD80 and CD86, two co-stimulatory molecules expressed on
antigen-presenting cells. Interactions of these ligands with
Frontiers in Oncology | www.frontiersin.org 3
CTLA-4 inhibits T-cell activation. Blockade of CTLA-4 with
anti-CTLA-4 antibodies enhances priming and activation of
naïve T-cells in lymph nodes and then migrate to tumors to
cause tumor rejection. Emerging evidences suggested that
combined PD-L1/PD-1 and CTLA-4 blockade could be relevant
in OC. NRG GY003, a phase II trial evaluating nivolumab alone or
in combination with ipilimumab, demonstrated a higher response
rate (31.4%) with the combination compared to nivolumab alone
(12.2%) (49). Various ongoing trials are evaluating the benefit of
anti-PD-1/PD-L1 and CTLA-4 therapy including the IneOV
(NCT03249142) trial which is evaluating the combination of
neoadjuvant Durvalumab and chemotherapy +/- Tremelimubab
(anti-CTLA-4) in 66 patients with inoperable OC. Preliminary
results showed that the combination achieved an overall
macroscopic complete resection rate of 58% and a rate of major
pathological response (Chemotherapy Response Score 3) of 38%.
However, addition of Tremelimumab did not increase CC0 or
CRS3 rates (50).
IMMUNOSUPPRESSION IN OVARIAN
CANCER

PD-L1/PD-1 inhibition in ovarian cancer remains disappointing.
CD8+ cells and PD-L1 may not be the only relevant immune
targets in OC. Other immune subsets such as tumors-associated
macrophages (TAMs), cancer-associated fibroblasts (CAFs) or
regulatory T lymphocytes (Tregs) may be crucial in mediating
immune tolerance and resistance (Figure 1) to PD-L1/PD-
1 inhibition.

Tumor-Associated Macrophages
Among the numerous factors that play a pivotal role in
immunosuppressive TME of OC, TAMs are the most abundant
infiltrating immune cells, particularly inmalignant ascites (51–53).
Due to their plastic nature, macrophages may polarize into two
distinct forms depending on the local environment, the anti-
tumorigenic (M1-like) and the pro-tumorigenic (M2-like).

In the OCmicroenvironment, TAMs generally exhibit the M2-
like phenotype, with high expression of scavenger receptor class B
(CD163), mannose receptor (CD206) and immunosuppressive
factors, including interleukin-10 (IL-10), IL-6, TGF-b, as well as
chemokines CCL18 and CCL22 to support immune escape and
angiogenesis (54–56). A high density of CD163+ M2-
macrophages is associated with poor prognosis in epithelial
ovarian cancer whereas high ratio of M1/M2 was associated
with extended survival in OC patients (57, 58).

TAMs induce an immunosuppressive environment that
suppresses the function of T cells, DCs, and natural killer (NK)
cells and activates the function of regulatory T cells (Tregs) (59–
61). TAMs can suppress T-cell activity by the depletion of L-
arginine in the tumor microenvironment. Indeed, the expression
of Arginase 1 by TAMs leads to the depletion of L-arginine which
is essential for T-cell functions and TCR signaling (62–64).
Binding of SIRPa expressed on the surface of myeloid cells to
its ligand CD47 on tumor cells acts as a « don’t eat me signal »
December 2021 | Volume 11 | Article 795547
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(65). CD47 expression in patients with OC correlates with poor
prognosis, potentially by inhibiting macrophage phagocytosis
(66, 67).

Several strategies targeting TAMs are under investigation
including: TAM depletion, TAM exclusion from the TME,
TAM reprogramming from M2 to M1 and restoring
phagocytic capacity.

The combination of PD0360324, a monoclonal antibody
against macrophages colony-stimulating factor, with
cyclophosphamide is under clinical investigation for patients
with HGSOC in a phase II trial (NCT02948101).

CXCR4/CXCL12 contributes to the recruitment of the
suppressive M2 macrophages and has been correlated with
poor clinical outcome in OC (68–70). Pharmacological
inhibition of this pathway with the CXCR4 inhibitor,
AMD3100, alone or in combination with anti-PD-1 therapy
have shown promising results in hepatocellular and ovarian
preclinical models (71).

To restore the phagocytic capacity of TAMs, one of the most
investigated strategy is the inhibition of CD47/SIRPa pathway. A
number of therapeutics that target the CD47/SIRPa axis are under
preclinical and clinical investigation (72). A phase I trial of an anti-
CD47 antibody Hu5F9-G4 demonstrated encouraging results in
OC, two patients with ovarian/fallopian tube cancers had partial
remissions for 5.2 and 9.2months (73). These results have led to an
ongoing phase I trial testing Hu5F9-G4 in combination with
avelumab in patients with OC (NCT03558139). BI 765063 is a
Frontiers in Oncology | www.frontiersin.org 4
SIRPa inhibitor tested in a phase I dose escalation as monotherapy
or in combination with ezabenlimab (anti PD-1) in advanced solid
tumors has showedpromising clinical activity, including onepartial
response in monotherapy (hepatocellular carcinoma) and three
partial response in combination (endometrial and colorectal
cancer) (74).

Regulatory T Cells
Regulatory T-cells mediate a suppressive microenvironment
though the inhibition of T-cell proliferation/recruitment,
cytokine production (TGF-b, IL-10, IL-35) and suppression of
antigen presentation in DC in a majority of cancers (75–77).
Several studies have shown that high Foxp3 expression by Tregs
is associated with poor prognosis in ovarian cancer in terms of
overall survival and progression-free survival (78, 79).

Denileukin Difitox (Ontak) is a recombinant fusion protein
product of diphtheria toxin and IL-2 that selectively binds to
CD25 on Tregs and can cause their depletion. Ontak has sown
promising results in melanoma and is currently being tested in
OC. In a phase I clinical trial involving seven patients with
advanced adenocarcinomas, including ovarian cancers,
treatment with Ontak was associated with a reduction in
peripheral blood CD3+/CD4+/CD25+ cells and an increase in
the number of circulating IFN-g-producing T cells (80). On this
basis, a phase II trial of Ontak in OC was initiated (81).

Toll-like receptor agonist-8 (TLR8) can reverse the
suppressive function of human CD25+ Treg (82–84). VTX-
FIGURE 1 | Immunosuppressive tumor microenvironment mediated by Tregs, CAFs and TAMs. OC tumor microenvironment includes antitumor immune cells such
as cytotoxic CD8+ T lymphocytes (CD8+ LT), natural killer cells (NK cells) and dendritic cells (DC), and immune tolerant cells such as tumor associated macrophages,
cancer associated fibroblasts and regulatory T cells responsible for immune escape. TAMs, CAFs and Tregs express an array of effector molecules that inhibit the
antitumor immune responses including cell surface receptors, cytokines, chemokines, and enzymes. Through the expression of immunosuppressive cytokines
including TGF-b, IL-6, IL-10 and IL-35, TAMs, CAFs and Tregs inhibit CD8+ LT recruitment, activation and cytotoxicity, promote CD8⁺ LT exhaustion and impede DC
maturation. CAFs also reduce antigen presentation function of DC via the secretion of TGF-b, which downregulate the expression of MHC II and co-stimulatory
molecules on DC. CAFs can secrete IL-6 and thereby contribute to monocytes recruitment and macrophages differentiation to M2-like phenotype. TGF-b expression
by CAFs negatively regulate NK cells activation and cytotoxic activity. FAPhigh CAFs increase differentiation of CD4⁺ cells into CD25+FoxP3+ Tregs and retain them at
their surface by expression of OX-40. Tregs constitutively express the co-inhibitory molecule, CTLA-4 which inhibits antigen presentation by binding on CD80 and
CD86, co-stimulatory molecules expresses on DC. Tregs also inhibit CD8+ LT activation via IL-2 consumption which is necessary to T-cells activation. The cytokine
CCL22 produces by TAMs generate chemokine gradient that induces Treg accumulation in the TME. TAMs also express co-inhibitory molecules such as PD-L1 or
B7-1/B7-2 and suppress CD8+ LT cytotoxic activity upon activation with their ligand, PD-1 and CTLA-4. TAMs also impair LT activity though metabolization of L-
Arginine which is essential for T-cell function and TCR signaling.
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2337, a synthetic small-molecule agonist specific to TLR8 was
investigated in two phase II trials in recurrent OC (85, 86).
Unfortunately, the addition of VTX-2337 to pegylated lyposomal
doxorubicin did not improve clinical outcomes compared with
placebo. Another potent TLR8 agonist, DN052 inhibited tumor
growth and enhanced efficacy of ICIs in vitro (87) and is
currently advancing in phase 1 trials in patients with advanced
solid tumors (NCT03934359).

Tumor necrosis factor receptor 2 is expressed by highly
immunosuppressive Treg and thereby represents an attractive
target protein. In vivo, inhibition of TNFR2 leads to OC cells death,
Treg inhibition and T-cells effector expansion (88). A phase I/IIa of
BI-1808, amonoclonal antibody againstTNFR2, as a single agent and
in combination with pembrolizumab is ongoing in patients with
advanced malignancies including OC (NCT04752826).

The relevance of B cell population and in particular regulatory
B cells is poorly described in OC, there are some loose
correlations with outcome in retrospective studies. For example
CD19+ B cell populations tend to predict poor survival while
CD20+ B cells predict improved PFS. However therapeutic
strategies targeting B cells are currently lacking in solid
tumors, especially OC (89).

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts have been implicated in tumor
proliferation, invasion, metastasis, angionesis and resistance to
cancer therapeutics (90, 91). More recently, some CAF subsets
have been shown todampen the anti-tumor immune response (92).
CAFs secrete numerous cytokines including TGF-b, IL-6, IL-8, IL-
10, and VEGF that contribute to the immunosuppressive TME by
promoting monocyte recruitment or macrophages differentiation
to M2-phenotype (93). Through the secretion of TGF-b, CAFs
negatively regulateNK cells activation (94) and inhibit CD8+ T cell
cytotoxic functionbyreducing the expressionofperforin, granzyme
and IFN-g (95, 96). CAFs also down-regulate the antigen
presentation capacity of dendritic cells (97, 98) and increase
differentiation of Tregs (98, 99). The capacity of CAFs to suppress
anti-tumor immunity makes them another promising therapeutic
target for cancer treatment. FAP (fibroblast associated protein) and
a-Smooth Muscle Actine (a-SMA) are markers of a particularly
immunosuppressive subpopulation of CAFs.

Numerous approaches have been investigated in pre-clinical
and clinical models such as CAF depletion by targeting FAP with
pharmacological inhibitors, monoclonal antibodies, DNA FAP
vaccines and CAR-T cells specific for FAP (100–104).

Two types of bispecific antibody targeting FAP/IL-2
(RO6874281) and FAP/4-1BB(RO7122290) are currently under
investigation as CAF-targeting strategies. RO6874281 was shown
to activate CD8+ T-cells and NK cells and to reduce Treg activity
(105). The bispecific antibody targeting FAP/4-1BB enhanced T-
cell stimulation in vivo and led to tumor remission in mouse
models (106). An ongoing phase I trial is currently testing
RO7122290 in monotherapy or in combination with
atezolizumab in patients with advanced solid tumors (107).

Finally one last strategy is to target a ubiquitous
immunosuppressive cytokine, such as TGF-b. Downregulation
of TGF-b could inhibit TAMs, CAFs, Tregs as well many other
Frontiers in Oncology | www.frontiersin.org 5
immune tolerant subsets. Gemogenovatucel-T (Vigil) is an
autologous tumor cell vaccine which specifically reduces
expression of furin and downstream TGF-b1 and TGF-b2. Vigil
was tested in a phase II trial as immunotherapy maintenance after
1st line chemotherapy for advanced newly diagnosed OC (108).
VIGIL showed a trend for an improved recurrence-free survival vs
placebo (11,5 vs. 8,4 months); intriguingly, the benefit was
significant among the subset with HR proficient tumors
(RFS:10,6 vs 5,7mo, p=0,007)versus 55% for placebo, p=).
Combination of Vigil with atezolizumab or durvalumab is
currently being tested (NCT03073525, NCT02725489).

Co-Regulatory Molecules
Immune cells express a variety of other co-regulatory molecules
beyond PD-L1/PD-1 which could be targeted for the
development of new immunotherapeutic strategies for patients
with refractory tumors.

Co-Inhibitors
TIM-3 and LAG -3 act as negative regulators of activation and
proliferation of T-cells. High expression of TIM-3 have been
detected in OC and associated with poor prognosis (109, 110). In
a study involving 98 patients with OC, TIM-3 was the most
prevalent co-regulator with more than 75% of the samples being
TIM-3 positive (111). Multiple Phase I clinical trials are currently
testing anti-TIM-3 antibodies alone or in combination with anti
PD-1 therapy for the treatment of cervical and ovarian cancer
and advanced recurrent solid tumors (NCT03099109,
NCT02608268, NCT03652077).

LAG-3 have been shown to play a important role in the
development of OC (112). CD8+ lymphocytes co-expressing
LAG-3 and PD-1 demonstrate impaired effector function and
IFN production (113). Huang et al. found that LAG-3 and PD-1
inhibit T-cell signaling synergistically when they are co-
expressed on TILs (114). The addition of the Anti-LAG-3
antibody, relatlimab significantly enhanced benefit from PD1
inhibition in a phase III trial in melanoma (115).

B7-H3 and B7-H4 aremembers of the immune regulatory ligand
of theB7 family andbothhave been found to be overexpressed inOC
(in 93% and 100% of the tumors, respectively) (116, 117). Three
agents: MGD009, a dual-affinity re-targeting protein against B7-H3,
DS-7300a FPA150, two antibodies targeting B7-H3 and B7-H4
respectively, are being investigated against solid tumors
(NCT03406949, NCT04145622, NCT03514121).

Co-Stimulators
4-1BB (CD137) is amember of the TNF receptor family andmainly
expressed by activated T-cells and APC. Signaling via 4-1BB
upregulates survival genes, enhances cell division, induces
cytokine production, and prevents activation-induced cell death
in T cells. In OC, 4–1BB has been investigated in combination with
other immune checkpoint agents such as PD-1 and TIM-3.
Combination of CD137 stimulation with PD-1 inhibition in
mouse ovarian cancer model induce synergistic antitumor
immune response. Currently, no trial is specifically targeting 4–
1BB specifically for gynecologic tumors although multiple phase I
trials are under investigation in solid tumors.
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OX40 (CD134), a member of the TNF superfamily, is mainly
detected on active effector CD4+ T cell and NKT cells, as well as
on Tregs. OX40 has dualistic and opposing functions depending
on the cell type; it is agonist on cytotoxic T and NK cells but
inhibitory on Tregs. Ramser et al. have evaluated the expression
of OX40 in 47 samples of HGSOC and found that high
expression of OX40 was associated with chemosensitivity and
prognosis (118). Treatment with ATOR-1015, a bi-specific
CTLA-4 antagonist and OX40 agonist antibody, induces T-cell
activation and Treg depletion in vitro, reduces tumor growth and
improves survival in syngeneic tumor models (119).

Glucocorticoid-induced tumor necrosis factor receptor
(GITR) is predominately expressed on active B cells, NK cells,
and T-cells. In a study conducted by M T Zhu et al., GITR
expression in malignant cells was detected in 3.2% of OC (120).
Combination of PD-1 blockade and GITR triggering showed
promising results in murine ID8 OC, with 20% of the mice
becoming tumor-free 90 days after tumor injection. Combined
treatment with anti-PD-1/GITR antibody and chemotherapeutic
drugs further increased the antitumor efficacy with 80% of mice
achieving tumor-free long-term survival (121).
CONCLUSION

Immune checkpoint inhibitors are some of the most prominent
agents that strengthens the activity of our adaptive immune
Frontiers in Oncology | www.frontiersin.org 6
system, and have demonstrated success in treating different types
of cancer. With significant promises in melanoma and other
solid tumors, ICIs have also been evaluated in OC. Contrary to
expectations, their efficacy for treating OC is very low.

OC’s immunosuppressive TME may contribute to the limited
activity of ICIs. Moreover, CD8+ cells and PD-L1 may not be the
only relevant immune targets in OC. Targeting other immune
subsets such as TAMs, Tregs or CAFs may be relevant to make
progress in cancer immunotherapy. In addition to the PD-L1/
PD-1 axis, other immunosuppressive molecules, such as CTLA-
4, TIM-3 and LAG-3 should be taken into consideration for the
development of new immunotherapeutic strategies. Finally,
although not the subject of this review, other promising
strategies include next generation approaches such as TCR
engineering, CAR-T cells, dendritic vaccination, TILs based
therapies or oncolytic viruses.
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