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• Non-invasive, robust and reliable biomarkers for early detection of ovarian cancer are urgently needed
• Extracellular RNAs circulating in biofluids have emerged as biomarker candidates for early detection of ovarian cancer
• The transcriptome of serum, plasma, ascites and urine of ovarian cancer patients has been explored
• RNA-based signatures show potential to outperform the diagnostic performance of CA125
• Stringent validation of the reported markers is required before implementation in routine clinical care
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Ovarian cancer is often diagnosed in an advanced stage and is associatedwith a highmortality rate. It is assumed
that early detection of ovarian cancer could improve patient outcomes. Unfortunately, effective screening
methods for early diagnosis of ovarian cancer are still lacking. Extracellular RNAs circulating in human biofluids
can reliably bemeasured and are emerging as potential biomarkers in cancer. In this systematic review, we pres-
ent 75 RNA biomarkers detectable in human biofluids that have been studied for early diagnosis of ovarian can-
cer. Themajority of thesemarkers are microRNAs identified using RT-qPCR or microarrays in blood-based fluids.
A handful of studies used RNA-sequencing and explored alternative fluids, such as urine and ascites. Candidate
RNA biomarkers that were more abundant in biofluids of ovarian cancer patients compared to controls in at
least two independent studies include miR-21, the miR-200 family, miR-205, miR-10a and miR-346. Amongst
the markers confirmed to be lower in at least two studies are miR-122, miR-193a, miR-223, miR-126 and
miR-106b.While these biomarkers showpromising diagnostic potential, further validation is required before im-
plementation in routine clinical care. Challenges related to biomarker validation and reflections on future per-
spectives to accelerate progress in this field are discussed.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ovarian cancer is the fifth leading cause of cancer-related mortality
in women, with five-year survival rates below 45%, largely driven by
late stage diagnoses [1]. Ovarian cancer is often referred to as a ‘silent
killer’ because local stage disease is usually asymptomatic and symp-
toms of advanced stage disease are nonspecific. More than 75% of af-
fected women are diagnosed when the cancer is already in advanced
stage and has spread beyond the pelvis. Early detection of ovarian can-
cer is key as local stage disease can be cured more effectively than late
stage disease and has a 5-year survival rate of 93% [1]. Ovarian cancers
are classified into various histological subtypes, with various underlying
transcriptional andmutational patterns. High-grade serous carcinoma is
the most prevalent and most challenging subtype to detect in geneti-
cally predisposed populations, such as germline BRCA1/2 mutation car-
riers. Unfortunately, no effective screeningmethod for this cancer entity
is available. Cancer antigen 125 (CA125) testing in serum, the most
studied ovarian cancer screening modality so far, has important limita-
tions [2,3]. Less than 50% of patients with early stage ovarian cancer
have elevated CA125 levels, and elevated CA125 levels can also be ob-
served in benign conditions. It is currently impossible to diagnose ovar-
ian cancer without surgical resection of the tumor mass. Therefore,
there is an urgent clinical need for non-invasive, robust and reliable di-
agnostics for ovarian cancer detection.

Extracellular RNAs (exRNAs) in blood and other biofluids are emerg-
ing as potential biomarkers for a wide range of diseases [4–6]. These so-
called liquid biopsies may offer a non-invasive alternative to tissue
biopsies for diagnosis, prognosis and treatment response monitoring.
Approaches to identify potential biomarkers for ovarian cancer screen-
ing include the characterization of circulating tumor DNA, circulating
tumor cells and metabolites, amongst others. In this review we focus
on the quantification of exRNAs. The repertoire of circulating RNA mol-
ecules in human biofluids is more diverse and complex than originally
anticipated. A multitude of previously unknown coding and non-
coding RNA species have been identified in biofluids (Fig. 1A). While
messenger RNAs (mRNAs) serve as template for translation, and thus
for the synthesis of proteins, the majority of the transcriptome does
not code for proteins. Instead, these non-coding RNAs play regulatory
roles during transcription and translation. This includes small non-
coding RNAs such asmicroRNAs (miRNAs, 18–24 nucleotides in length)
and long non-coding RNAs (lncRNAs, >200 nucleotides). More recently,
circular RNAs (circRNAs) have been discovered as a novel class of non-
coding RNAs with biomarker potential [7]. Human biofluids contain
high levels of endo- and exonucleases which makes extracellular RNAs
prone to degradation. As a result, degraded RNA fragments are present
in fluids, which adds to the complexity of quantifying RNA. Fortunately,
some RNAs in circulation are less prone to degradation because of their
intrinsic stability (circRNAs), binding to carrier proteins such as
Argonaute 2 (miRNAs) or encapsulation in membrane-enclosed vesi-
cles, referred to as extracellular vesicles (EV). Accurate measurements
of RNA are possible provided the methods for sample collection, pro-
cessing and RNA isolation are optimized and standardized.

Three principal methods are used to measure the expression levels
of exRNAs: reverse transcription quantitative PCR (RT-qPCR),
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microarray hybridization and RNA-sequencing (RNA-seq), each with
their own strengths and limitations (Figure1B). RT-qPCR and microar-
rays allow RNA quantification of a predefined set of target sequences
while RNA-seq is a high-throughput method that does not require any
prior genomic information other than a reference genome to map the
identified sequence. Because of this, RNA-seq is gaining acceptance as
a routine clinical lab test [8].

Here we provide a systematic overview of RNA biomarkers detect-
able in human biofluids that have been studied for early diagnosis of
ovarian cancer. We aim to assess agreements and disagreements of
these reported RNA biomarkers and to summarize available evidence
for each candidate biomarker in the context of a future implementation
in routine clinical care.

2. Materials & methods

Reports of current systematic review adhere to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
[9]. This systematic review was prospectively registered with the
PROSPEROdatabase (Ref: CRD42020197950). Patientswere not directly
involved in the conduct of this study. MEDLINE (via PubMed) and the
Embase database were searched using a systematic search strategy
(supplementary Table S1) from inception until 15 August 2020. For-
ward and backward snowballing to identify additional relevant publica-
tions was performed.

Primary literature screeningwas performed by two researchers (AM
and EH), independently, in a blinded standardized way using the
Rayyanweb application [10]. Only peer-reviewed studies written in En-
glish were considered. Case-control biomarker studies focusing on RNA
molecules detected in human biofluids, comparing adult patients diag-
nosed with ovarian cancer against control group(s) with the aim to
identify diagnostic biomarkers were eligible. Only original studies that
included at least 20 newly diagnosed ovarian cancer patients were in-
cluded. In silico analyses entirely based on data of previous studies
were excluded. Case reports, reviews, commentaries and conference re-
ports were excluded. Studies where RNA molecules are studied (based
on their presence/absence or concentration) to distinguish ovarian can-
cer from control group(s) using univariate or multivariate statistical
models, were included.

Two independent reviewers (AM and EH) also performed the data
extraction. Disagreement between reviewers was resolved by consen-
sus. The following data were extracted from each full-text manuscript:
(1) study characteristics (authors, year of publication, journal, country,
publication type), (2) biofluid studied, (3) RNA biotype studied,
(4) technique to quantify the RNA, (4) reproducibility of the methods
(biofluid collection, RNA isolation, data analysis), (5) histological type
of ovarian cancer, and the International Federation of Gynecology and
Obstetrics (FIGO) classification, (6) biofluid collection prior to therapy,
(7) definition of the control group, (8) number of participants in the
ovarian cancer group and the control group, (8) independent validation
cohort included, (9) comparison with CA125, (10) pre-defined cutoff,
(11) number of differentially expressed RNAs, upregulated RNAs and
down-regulated RNAs, statistical test used, p-value, multiple testing
correction, (11) statistical model with selected RNAs, sensitivity,



Fig. 1. (A) Overview of different RNA biotypes identified in human biofluids. (B) Main detection methods for RNA in biofluids. Reverse transcription quantitative PCR (RT-qPCR): RNA is
converted into cDNA and amplified by PCR in the presence of a target-specific oligonucleotide bound to a fluorescent probe or a fluorescent DNA binding dye. The number of PCR cycles
needed to reach a detection threshold offluorescence is inversely related to the amount of input RNA and can therefore be used to determine the relative concentration of RNA.Microarray:
RNA is extracted fromdiseased and control samples, reverse transcribed, andfluorescently labeled (e.g. green for diseased cDNA and red for control cDNA). The cDNAs is then hybridized to
a microarray chip, where they bind to complementary sequences (probes) from annotated genes. The relative amount of green versus red fluorescence corresponds to the relative
expression of genes in control versus diseased samples. RNA sequencing: extracted RNA is fragmented, reverse transcribed, and extended with adapters to enable massively parallel
sequencing. The resulting sequences (reads) are aligned against the reference genome to reveal the expression level of the various genes.
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specificity and area under the curve of the model. The risk of bias per
study was independently assessed by two investigators (AM and EH)
using the Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) checklist[11].

3. Results

3.1. Study selection

The PRISMA diagram for the study selection process is shown in
Fig. 2. We identified 780 records through the database search, of
which 36 records met the inclusion criteria and were included for qual-
itative synthesis [12–47]. Characteristics of the included studies are
summarized in Table 1. The detailed extraction table is provided in sup-
plementary Table S2. All 36 records are studies with a case-control de-
sign comparing liquid biopsy samples of ovarian cancer patients and a
control group. In most studies, the control group consisted of (age-
matched) healthy women or women with a benign ovarian mass, be-
nign gynecologic disease or a borderline ovarian tumor. In one study,
women with solid cancers (other than ovarian cancer) were also stud-
ied as control group [13].
635
3.2. Risk of bias assessment

A summary of the risk of bias assessment of the 36 included studies
is shown in supplementary Figure S1. All studies were judged to have a
high risk of bias in at least three domains of the QUADAS-2 checklist. All
36 studies are case-control studies. Selection bias is inherent to this
study design, as there are often confounding factors not specifically as-
sociated with the disease status itself, but associated with certain char-
acteristics of the diseased patient group [48]. Initial screening of the
biomarkers includes a comparison of the two groups without statisti-
cally controlling for confounding factors, potentially resulting in false
discoveries. Matching is of use to adjust for known confounding factors.
In 14 out of the 36 studies age-matching between cases and controls
was applied. In two studies, gender nor age of the control groupwas re-
ported [38,45]. Samples of ovarian cancer patients with FIGO stage I-II
are most interesting to investigate in the context of early detection. All
studies, except two where the FIGO classification of the patients is not
mentioned, combined samples from early disease (stage I-II) and ad-
vanced disease (stage III-IV). Details on the number of samples per dis-
ease stage are provided in supplementary Table S2. Notably, biomarkers
identified in patientswith advanced disease are not necessarily useful in



Fig. 2. PRISMA flow diagram.

E. Hulstaert, A. Morlion, K. Levanon et al. Gynecologic Oncology 160 (2021) 633–642
the early disease setting. In 30 out of the 34 studies, the liquid biopsy
was collected in treatment naïve patients and before surgery, reflecting
the intended use. In the remaining 6 studies, the timepoint of fluid col-
lection was not mentioned.

3.3. Basic characteristics of the included studies

The vast majority of the studies (34/36) focused on blood-derived
fluids: 21 studies included serum samples, two studies focused on ex-
tracellular vesicles (EVs) isolated from serum; eight studies included
plasma, two studies focused on EVs isolated from plasma and one
study focused on both plasma and plasma EVs (Table 1). Only two stud-
ies investigated alternative biofluids: one study looked into urine [37]
and another one focused on ascites.

Although the extracellular transcriptome of human biofluids is com-
plex and diverse, most liquid biopsy studies in this field focused on
miRNAs (30/36). Only two studies looked into circRNAs [23,27], two
studies investigated mRNAs [18,38], one study looked into long non-
coding RNAs (lncRNAs) [45] and one study looked into a combination
of one miRNA, one lncRNA and one mRNA [25].

Surprisingly, RNA sequencing for unbiased biomarker discovery is
rarely used in the reported literature on RNA biomarkers for early diag-
nosis of ovarian cancer. Only three studies used RNA sequencing in com-
bination with RT-qPCR to detect potential biomarkers [14,41,46]. In 25
studies the biomarker detection is based on RT-qPCR only, in five stud-
ies both a miRNA microarray and RT-qPCR were used [32,34,35,37,42]
and in three studies only a miRNA microarray was used [13,19,25].

Sample sizes of the studies range from 50 (25 ovarian cancer pa-
tients versus 25 women with benign ovarian cysts) [20] to 3079 (320
ovarian cancer patients versus 2759 healthy women) [13]. Ideally, if a
biomarker test performs well in the discovery cohort, its performance
should be evaluated in an independent validation cohort [49]. Only in
9/36 studies the potential biomarker is validated in an independent co-
hort [13,20,24,26,34,35,37,42,46]. In addition, having results
reproduced by an independent research group adds to the robustness
of the findings.

3.4. Overlap and discrepancies between the markers reported in different
studies

In total, 75 RNA biomarkers have been reported to be differentially
abundant in biofluids of ovarian cancer patients compared to liquid bi-
opsy samples of the control group (Table 2). The majority of these
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RNA biomarkers (39/75) were exclusively higher in ovarian cancer, 26
biomarkerswere exclusively lower in ovarian cancer. For 10 biomarkers
conflicting results were observed in different studies.

Markers thatwere reported in at least two studies or two biofluids or
that were validated in an independent validation cohort within one
study, are considered to be more reliable as candidate marker than
markers that are only reported in a single case/control cohort. Bio-
markers confirmed to be higher in at least two studies include miR-21,
the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and
miR-429), miR-205, miR-10a and miR-346. Amongst the biomarkers
confirmed to be lower in at least two studies are miR-122, miR-193a,
miR-223, miR-126 and miR-106b.

The discrepancy observed for 10 biomarkers might be partly due to
the difference in included ovarian cancer types, e.g. miR-195, miR-16
and miR-191 are higher in plasma of endometriosis-associated ovarian
cancer (either clear cell or endometrioid carcinoma) compared to
healthy women [21], while these three markers are lower in plasma
or plasma EVs of epithelial ovarian cancer patients (in who pre-
existence of endometriosis is not reported) compared to healthy
women or women with a benign ovarian mass [16,19,24]. Other poten-
tial factors contributing to discrepant results might be the differences in
biofluid collection, in methods to identify the RNA molecules and in
data-analysis.

3.5. Diagnostic performance of the reported models

Quantifying RNA results in a continuous value, rather than a simple
present or absent call. Receiver operating characteristic (ROC) curves
are often used to determine the most optimal threshold value as they
show the trade-off between sensitivity and specificity for every possible
threshold. In case of markers for ovarian cancer, this trade-off refers to
wanting to detect as many ovarian cancer cases as possible (true posi-
tives) while keeping the number of misclassified non-cancerous cases
(false positives) low.Moreover, the area under a ROC curve (AUC)mea-
sures the overall performance of a marker, or a combination of markers.
A perfect classifier would result in an AUC of 1 while a classifier with an
AUC of 0.5 does not perform better than random chance.

Out of the 34 studies in this review, 27 studies performed at least one
ROC curve analysis. The AUCs of the best performing classifiers in these
studies range from 0.694 to 1 (Suppl. Table 2). Half of the studies report
a 95% confidence interval for the AUC value. In order to avoid overfitting,
the classifierwith its prediction rule should ideally be validated in an in-
dependent patient cohort, or in case this cohort is not available, through
cross-validation-based methods [49]. However, this is done in less than
a third of the studies (five have an independent cohort, four used cross-
validation).

Even though CA125 protein is currently the standard diagnostic
marker for ovarian cancer, only one third of the studies directly compare
the performance of (combinations of) RNA markers to CA125. Individ-
ual levels of serum EV miR-145 [15], serum EV miR-200b [15], plasma
circBNC2, and serum RPS-8337J1.2 [25] resulted in a higher AUC than
that of the CA125 protein. The combination of miR-205 and let-7f was
also able to outperform CA125 [42], just like a neural network based
on 14 miRNAs [46]. Contrary to the individual RNA markers above, the
better performance of these two combined models were each validated
in an independent cohort as well. Additionally, several combinations of
CA125with RNAmarkers are proposed that seem to increase diagnostic
performance: serum EVmiR-375+ serum EVmiR-1307+ CA125 [30];
serum miR-99a-5p + CA125 [47]; plasma KISS1 mRNA + CA125 [18];
plasma miR-200c + plasma miR-221 + CA125 [24]; serum miR-193a-
5p+HE4+ CA125 [33]. However, validation in an independent cohort
or cross-validation is lacking for all models except the first one.

The best reported individual RNA classifiers are five miRNAs (miR-
141, miR-200a, miR-200c, miR-429, and miR-1290) that each have a
perfect classifying ability (AUC 1), but this study has no validation co-
hort and compares RNA in ascites from ovarian cancer patients to RNA



Table 1
Overview of study characteristics and detected higher or lower abundant RNAs in ovarium cancer vs controls.

Reference Differentially higher
abundant

Differentially lower abundant Biofluid Technique FIGO stage (n) Discovery (n) Validation (n)

I,II III,IV UN OV HC BD OV HC BD

Chen et al.
[18]

KISS1 plasma RT-qPCR 12 28 40 20

El-Shal et al.
[25]

RP5-837 J1.2 miR-361-3p, PELI3 serum RT-qPCR 24 26 50 45 42

Elias et al.
[46]

serum RT-qPCR,
microarray,
RNA seq

142a 149a 255 138 111b 25 0 26

Fan et al.
[27]

circMAN1A2 serum RT-qPCR 36 36 36

Galdiero
et al. [38]

HMGA2 plasma RT-qPCR 11 36 47 23

Gao and Wu
et al. [40]

miR-141, miR-200c serum RT-qPCR 54 20 74 50 19b

Guo et al.
[43]

miR-92 serum RT-qPCR 35 15 50 50

Hu et al. [23] circBNC2 plasma RT-qPCR 25 58 83 83 83
Ji et al. [41] miR-22, miR-93 miR-106b, miR-451 serum RNA seq,

RT-qPCR
7 24 31 8 23

Kan et al.
[44]

miR-200a, miR-200b,
miR-200c

serum RT-qPCR 1 27 28 28

Kim et al.
[15]

miR-93, miR-145,
miR-200c

serum
EV

RT-qPCR 17 31 48 20

Kobayashi
et al. [31]

miR-1290 serum RT-qPCR 37 33 70 13

Langhe et al.
[20]

let-7i-5p, miR-25-3p, miR-122, miR-152-5p serum RT-qPCR 6 19 5 5 20 20

Liang et al.
[39]

miR-145 serum RT-qPCR 31 53 84 135 51

Liu et al. [45] LOXL1-AS1 plasma RT-qPCR 118 67 185 43
Mahmoud
et al. [17]

miR-21 serum RT-qPCR 21a 40a 60 30

Márton et al.
[28]

miR-34a, miR-34b,
miR-141, mir-200a,
miR-200b, miR-200c,
miR-429, miR-203a

plasma RT-qPCR 28 28 60 12

Meng et al.
[36]

miR-7, miR-429 miR-25, miR-93 serum RT-qPCR 32 147 1 180 66

Oliveira et al.
[24]

miR-21-5p, miR-200c-3p,
miR-221-3p, miR-484

miR-195-5p, miR-451a plasma RT-qPCR 13 177 95 95 95 95

Paliwal et al.
[12]

miR-21 miR-22 serum RT-qPCR 32 48 80 80

Pan et al.
[16]

miR-21, miR-100, miR200b,
miR-320

miR-16, miR-93, miR-126, miR-223 plasma
EV

microarray 72 20 13 106 29

Ren et al.
[33]

miR-193a-5p serum RT-qPCR 12a 26a 27a 45 40 30

Shapira et al.
[19]

miR-1274a, miR-625-3p,
miR-720

miR-16, miR-17, miR-19b, miR-20a, miR-24,
miR30b, miR-30a-5p, miR-30c, miR-92a,
miR-106a, miR-106b, miR-126, miR-146a,
miR-150, miR-191, miR-193a-5p, miR-223,
miR-320, miR-328

plasma microarray 6 36 42 23 36

Su et al. [30] miR-375, miR-1307 serum
EV

RT-qPCR 8 42 50 50 50

Suryawanshi
et al. [21]

miR15b, miR-16, miR-21,
miR-191, miR-195,
miR-1973, miR-1974,
miR-1977, miR-1979,
miR-4284

plasma RT-qPCR 11 24 35 20 33

Todeschini
et al. [34]

miR-595, miR-1246,
miR-2278

serum microarray,
RT-qPCR

168 110 52 58 13

Wang et al.
[26]

miR-10a-5p, miR-145-5p,
miR-205-5p, miR-328-3p,
miR-346

plasma,
plasma
EV

RT-qPCR 34 77 32 34 69 66

Xu et al. [22] miR-21 serum RT-qPCR 32 62 94 40
Yokoi et al.
[13]

serum microarray 115 218 160 1379 173 1380 95

Yoshimura
et al. [47]

miR-99a-5p serum RT-qPCR 31 31 61 20 26

Záveský
et al. [32]

miR-30a-5p, miR-200a,
miR-200b, miR-200c,
miR-141, miR-429,
miR-1290

ascitesc microarray,
RT-qPCR

6 17 23 34

Zhang et al. let-7d-5p, miR-93-5p, miR-99b-5p, miR-122-5p, miR-185-5p plasma RNA seq, 6 24 30 30

(continued on next page)
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Table 1 (continued)

Reference Differentially higher
abundant

Differentially lower abundant Biofluid Technique FIGO stage (n) Discovery (n) Validation (n)

I,II III,IV UN OV HC BD OV HC BD

[14] miR-106a-5p EV RT-qPCR
Zheng et al.
[42]

miR-205 let-7f serum microarray,
RT-qPCR

133 227 76 30 284 170

Zhou et al.
[37]

miR-30a-5p miR-6076 urine microarray,
RT-qPCR

16 18 5 5 5 34 25 26

Zhu et al.
[35]

miRNA-125b serum microarray,
RT-qPCR

33 102 18 16 135d 54d

Zuberi et al.
[29]

miR-145 serum RT-qPCR 33 37 70 70

EV, extracellular vesicles; FIGO, International Federation of Gynecology and Obstetrics; UN, unknown; HC, healthy control; BD, benign gynecological disease; OV, ovarian cancer.
a Sum of reported subtypes is higher than reported number of ovarian cancer patients in study.
b Including borderline ovarian cancer.
c Ascites in ovarium cancer patients, plasma in healthy controls.
d Not completely independent - samples of discovery cohort also included in validation.

Table 2
Overview of reported RNA biomarkers in biofluids for early diagnosis of ovarian cancer.

RNA marker Biofluid RNA marker Biofluid

miR-21 plasma [21,25], plasma EV [16], serum [12,17,22] ++ miR-122 plasma EV [14], serum [20] ‐‐
miR-200a ascites [32], plasma [28], serum [44] ++ miR-193a plasma [19], serum [33] ‐‐
miR-200b ascites [32], plasma [28], serum [44] ++ miR-223 plasma EV [16], plasma [19] ‐‐
miR-200c ascites [32], plasma [24,28], serum [40,44],

serum EV [15]
++ miR-126 plasma EV [16], plasma [19] ‐‐

miR-106b plasma [19], serum [41] ‐‐
miR-141 ascites [32], plasma [28], serum [40] ++ let-7f serum [42] ‐‐
miR-429 ascites [32], plasma [28], serum [36] ++ let-7i serum [20] ‐‐
miR-205 plasma [26], plasma EV [26], serum [42] ++ miR-6076 urine [37] ‐‐
miR-10a plasma [26], plasma EV [26] ++ miR-451a plasma [24] ‐‐
miR-346 plasma [26], plasma EV [26] ++ miR-152 serum [20] ‐‐
miR-221 plasma [24] ++ miR-25 serum [20,36] ‐‐
miR-484 plasma [24] ++ miR-185 plasma EV [14] ‐
miR-1246 serum [34] ++ circBNC2 plasma [23] ‐
miR-595 serum [34] ++ miR-99b plasma EV [14] ‐
miR-2278 serum [34] ++ miR-451 serum [41] ‐
miR-125b serum [35] ++ miR-361 serum [25] ‐
circMAN1A2 serum [27] + PELI3 serum [25] ‐
HMGA2 plasma [38] + miR-146a plasma [19] ‐
let-7d plasma EV [14] + miR-150 plasma [19] ‐
miR-15b plasma [21] + miR-17 plasma [19] ‐
miR-1977 plasma [21] + miR-19b plasma [19] ‐
miR-1979 plasma [21] + miR-20a plasma [19] ‐
miR-1973 plasma [21] + miR-24 plasma [19] ‐
miR-1974 plasma [21] + miR-92a plasma [19] ‐
miR-4284 plasma [21] + miR-30b plasma [19] ‐
KISS1 plasma [18] + miR-30c plasma [19] ‐
miR-1307 serum EV [30] +
miR-375 serum EV [30] +
miR-34b plasma [28] + miR-93 plasma EV [14], serum EV [15], serum [41] ++
miR-34a plasma [28] + plasma EV [16], serum [36] ‐‐
miR-203a plasma [28] + miR-145 plasma [26], plasma EV [26], serum EV [15] ++
miR-1290 ascites [32] + serum [29,39] ‐‐
miR-100 plasma EV [16] + miR-30a ascites [32], urine [37] ++
miR-7 serum [36] + plasma [19] ‐‐
RP5-837 J1.2 serum [25] + miR-16 plasma [21] +
miR-1274a plasma [19] + plasma EV [16], plasma [19] ‐‐
miR-625 plasma [19] + miR-195 plasma [21] +
miR-720 plasma [19] + plasma [24] ‐‐
LOXL1-AS1 plasma [46] + miR-328 plasma [26], plasma EV [26] ++
miR-99a serum [47] + plasma [19] ‐

miR-106a plasma EV [14] +
plasma [19] ‐

miR-22 serum [41] +
serum [12] ‐

miR-320 plasma EV [16] +
plasma [19] ‐

miR-191 plasma [21] +
plasma [19] ‐

For each RNAmolecule the biofluid inwhich itwas studied and the study reference is shown. The+ and - signs correspond to higher and lower abundance, respectively, in ovarian cancer
samples versus controls. Markers that were consistently higher or lower in at least two studies, or in at least two biofluids, or that were validated in an independent cohort within one
study, are considered more reliable and are highlighted with ++ or –.
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in plasma from healthy controls [32]. The specific setup of the study
may have resulted in a biofluid classifier (ascites versus plasma) rather
than a classifier for ovarian cancer. The diagnostic performance of two of
these miRNAs, miR-200c and miR-1290, was also assessed in serum
samples and resulted in an AUC of 0.8 [5,40] and even below 0.5
(worse than random chance) [31], respectively.

Differential RNA abundance on its own does not guarantee good per-
formance as classifier. However, combining several of these RNAs in a
model seems to improve performance in most studies. The best
performingmodelwith independent validation is a model that contains
10 miRNAs in serum (miR-320a, miR-665, miR-3184-5p, miR-6717-5p,
miR-4459, miR-6076, miR-3195, miR-1275, miR-3185, and miR-4640-
5p) [13]. This model has a perfect AUC of 1 in both training and valida-
tion set (sensitivity 0.99, specificity 1). The second-best performing
model with validation (leave-one-out cross-validation) combines four
miRNAs in serum:miR-7,miR-429,miR-25, miR-93 (AUC 0.98, sensitiv-
ity 0.93, specificity 0.92) [36].
3.6. Involvement of the reported biomarkers in ovarian cancer pathogenesis

A perfect understanding of the function of a biomarker is not an ab-
solute requirement for its routine clinical use but itmayhelp researchers
to understand themechanismsof pathogenesis and progressionof ovar-
ian cancer. Non-coding RNAs regulate gene expression and have been
linked to known oncogenic pathways in various cancer types, including
ovarian cancer [50,51]. RNA markers that are involved in one or more
hallmarks of cancer, as defined in the foundational work of Hanahan
and Weinberg [52], are shown in Fig. 3. Here, we focus on the role of
these RNA molecules in ovarian cancer. Pinpointing the exact function
of one specific miRNA is not straightforward, as one miRNA can affect,
by direct or indirect effects, the expression of a great number of genes.
Fig. 3. RNA markers affect several hallmarks of cancer, reported by Hanahan a
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Fig. 3 only reflects a selection of miRNAs and a non-exhaustive view on
their putative role(s) in ovarian cancer.

In ovarian cancer, miR-30a has been assigned a pro-oncogenic func-
tion by sustaining proliferative signaling through targeting FOXL2 and
FOXD1 [53,54]. This miRNAwas observed to be higher in urine samples,
ascites samples, tissue samples and cell lines of ovarian cancer, while it
is lower in plasma of endometriosis-associated cancer patients
[21,32,37,53,54]. In other cancer types, including breast cancer, small
cell lung cancer and colorectal cancer, miR-30a functions as a tumor
suppressor [53].

MiR-221 has been associated with cell proliferation and inhibition
of apoptosis of cancer cells by targeting B-cell lymphoma 2 modify-
ing factor (BMF) [55]. MiR-221 is higher in plasma of ovarian cancer
patients [16].

The miR-200 family consists of 5 members (miR-200a, miR-200b,
miR-200c,miR-141 andmiR-429), all linked to several cancer hallmarks.
All 5 miRNAs are higher in ascites, plasma and serum [24,28,32,40,44].
MiR-141 and miR-200a have recently been associated with ovarian tu-
morigenesis by controlling the oxidative stress response through their
target p38α [56]. MiR-200a might exert its pro-oncogenic function
through modulating PTEN, PCDH9 and ING5, resulting in cancer cell in-
vasion and angiogenesis [57–59]. The miR-200 family, especially miR-
200c and miR-429, potentially regulates epithelial-to-mesenchymal
transition by targeting the E-cadherin repressor ZEB2 [60].

Conflicting differential abundance patterns of miR-328 have been
reported in plasma samples of ovarian cancer patients [19,26]. In cancer
stem cells, miR-328 exerts a pro-oncogenic function through the inhibi-
tion of DNA damage binding protein 2 (DDB2)[61].

MiR-145 has been reported to be higher in plasma, plasma EVs and
serum EVs of ovarian cancer patients in two studies [15,26], while it
was lower in serum of ovarian cancer patients in two other studies
[29,39]. In ovarian cancer tissue, miR-145 was downregulated
nd Weinberg [52], and contribute to the pathogenesis of ovarian cancer.
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compared to normal ovarian tissue. MiR-145 has a tumor suppressor
function by affecting the cancer cell metabolism. Overexpression of
miR-145 in ovarian cancer cell lines inhibits glutamine consumption
and cellular ATP levels through targeting MYC [62].

4. Discussion

This review summarizes the literature regarding RNA biomarkers
detectable in human biofluids for early diagnosis of ovarian cancer. A
limitation of this review is the heterogeneity of the included studies in
terms of methodology used. Robustness of procedures used for sample
processing and data analysis strongly influences the reproducibility of
biomarker studies [49]. Pre-analytical variables, such as blood collection
tube, volume, centrifugation speed and duration, are known con-
founders and should therefore be clearly reported [63]. Moreover, dis-
crepancies in protocols between samples from cases and controls or
between samples collected in multiple centers can bias the final results
and hamper direct comparisonwith other studies [64]. We assessed the
level of reproducibility for the liquid biopsy collection, RNA isolation
procedure and data-analysis in all studies (supplementary Table S2).
Remarkably, the liquid biopsy collection, RNA isolation procedure and
data-analyses can only be fully reproduced in one study based on the
descriptions in themanuscript [42]. In 33/36 studies, at least onemeth-
odological aspect of the biofluid collection (collection tube, volume,
centrifugation speed, centrifugation duration) is missing. In 21/36 stud-
ies, the input volume of the RNA isolation and/or the RNA isolation kit
are not mentioned. General data analysis procedures are reported in
the majority of studies (30/36) although some subparts of it, for exam-
ple the presence or absence of multiple testing correction, are not al-
ways clearly mentioned. In the absence of gold-standard protocols, we
recommend disclosing detailed information of the sample collection
methods, RNA isolation and profiling methods as well as the data anal-
yses. This will facilitate future identification, evaluation and develop-
ment of liquid biomarkers.

Screening of an asymptomatic average- or high-risk population for
early detection of cancer should be clearly distinguished from diagnos-
tic work-up of patients with known pelvic mass. For the latter, the ad-
vantages of liquid biopsies over standard surgical biopsies cannot be
underestimated, as they are non-invasive, simple to perform, more
patient-friendly and allow for serial testing. Thirty-four of the included
liquid biopsy studies in this review focus on blood-derived fluids.
While urine and ascites were investigated in two studies [32,37], the
biomarker potential of these alternative biofluids for early detection of
ovarian cancer is still mainly unexplored. Ascites is typically seen in ad-
vanced disease, and it is therefore not suitable for early detection of can-
cer, though it may highlight biomarkers that need to be validated in
other liquid biopsies. Utero-tubal lavage fluid on the other hand,
might be an interesting biofluid to further investigate and profile be-
cause it shows proximity to the tumor and its protein content has bio-
marker potential [65]. The low frequency of early stage high grade
serous ovarian cancer, which is an inevitable result of the lack of screen-
ing, is also the most challenging limitation of this research field. To date
there are no reports of large cohorts of liquid biopsies from early-stage
cases, or of samples taken shortly prior to ovarian cancer diagnosis,
though large efforts are ongoing (e.g. the STRIVE trial, NCT03085888
[66]). These biofluid collections are key to advance the development
of a clinically meaningful screening tool, which will actually reduce
ovarian cancer related mortality. As the included studies combine sam-
ples obtained from patients with early disease and advanced disease,
the potential biomarkers identified so far, should still be validated in a
cohort consisting only of early-stage ovarian cancer samples. Bio-
markers identified in patients with advanced disease are not necessarily
relevant for the early disease setting. The diagnostic performance of
LOXL1-AS1, a potential biomarker identified in a cohort of 119 early-
stage patients, 67 advanced patients and 43 healthy women, is clearly
higher in patients with advanced disease compared to patients with
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early-stage disease [45]. However, we cannot exclude that some current
or future biomarkers may exist that are useful for identification of both
early and advanced disease, albeit with different sensitivity. For exam-
ple, KISS1 mRNA is identified as potential biomarker in a cohort of 40
ovarian cancer patients (12 early-stage patients and 28 advanced-
stage patients) and 20 healthy women. The diagnostic performance of
KISS1 mRNA is higher in the early-stage group (AUC 0.879) compared
to the advanced-stage group (AUC 0.728) [18]. Confirmation of these
findings in an independent validation cohort of patients with early dis-
ease is needed. The majority of the reported RNA markers are miRNAs,
referred to in papers only by their name. However, unambiguous
reporting of a miRNA can only be achieved by either disclosing the se-
quence or, alternatively, providing its nameor accession number explic-
itly in combination with the release version of the miRBase database as
these may change over time [67]. Annotation of mRNAs, lncRNAs and
circRNAs might also change in the future so attention for unambiguous
reporting of these RNA biotypes is important as well.

To date, studies looking into the biomarker potential of circulating
RNAs for early detection of ovarian cancer are exploratory in nature
and identify altered levels of circulating RNAs in ovarian cancer patients
versus a control group. Although 75 RNA biomarkers have been identi-
fied as candidate diagnostic biomarkers in literature and part of these
RNA biomarkers have been confirmed in independent studies, addi-
tional validation steps are needed for all markers before application in
clinical setting is possible. These liquid biopsy tests have not yet demon-
strated analytical validity, clinical validity and clinical utility [49]. Ana-
lytical validation describes how accurately and reliably the test
measures the marker(s) of interest in the patient sample. Clinical vali-
dation assesses whether the biomarker can distinguish ovarian cancer
patients from all other individuals without ovarian cancer. Clinical util-
ity describes the likelihood that a biomarker testwill enable clinicians to
make decisions that ultimately reduce morbidity and mortality. Early
detection of cancer is widely believed to result in better patient out-
comes, but this remains to be demonstrated in each particular case.
Identifying candidate biomarkers is a first important step that has al-
ready been initiated in the ovarian cancer field. Making sure biomarker
tests also impact clinical management, and ideally patient quality of life
or overall survival, still is a hurdle to take [49].

With only three studies using RNA sequencing to profile the extra-
cellular transcriptome in serum and plasma EVs of ovarian cancer pa-
tients [14,41,46], we believe RNA sequencing of biofluids of ovarian
cancer patients is still an untapped resource for biomarker discovery. In-
stead of focusing on a single RNAmarker likemost of the included stud-
ies, the answer may lie in a combination of multiple biomarkers or even
multi-omics biomarker signatures.

We believe that further characterizing the circulating transcriptome
of biofluid samples from ovarian cancer patients is mandatory to allow
discovery and implementation of clinically useful biomarkers in this
field. In addition, the identified markers may trigger further research
elucidating the pathological processes and potential preventive or ther-
apeutic interventions. Prospective studies with standardized proce-
dures and large sample cohorts are warranted to enhance the
consideration of the clinical significance of circulating RNAs in ovarian
cancer.
5. Conclusions

Seventy-five RNAmarkers have been reported in human biofluids as
potential biomarkers for early diagnosis of ovarian cancer. Candidate
RNA biomarkers that were higher in biofluids of ovarian cancer patients
compared to control samples in at least two independent studies in-
clude miR-21, the miR-200 family, miR-205, miR-10a and miR-346.
Amongst the markers that are lower in at least two studies are miR-
122, miR-193a, miR-223, miR-126 and miR-106b. While some RNA-
based signatures have an improved diagnostic performance compared
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to CA125, further validation of the reported markers is required before
implementation in routine clinical care.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ygyno.2020.11.018.
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